

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
REPORT DOCUMENTATION PAGE READ INSTRUCTfO'4S

REPOT DCUM~4TAION AGEBEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

USCIPI Report 990 '
4. TITLE (Subtitle)S. TYPE OF REPORT h PERIOD COVEREo

Semiannual Tech. Report

IMAGE 1NTERSTANDING RESEARCH 1 Apr. 80 - 30 Sept. 80
6. PERFORMING OG. REPORT NUMBER

7. AUTHOR(*) 6. CONTRACT OR GRANT NUMBER(*)

(Principal Investigators)
Ramakant Nevatia F-33615-80-C-1080
Alexander A. Sawchuk

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Image Processing Institute AREA & WORK UNIT NUMBERS

University of Southern California DARPA Order No. 3119
University Park, Los Angeles, Ca. 90007

It. CONTROLLING OFFICE NAM9 AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency September 30, 1980
1400 Wilson Boulevard 13. NUMBER OF PAGES

Arlington, Virginia 22209 21:
Il. MONITORING AGENCY NAME & AOORESS(i different from Controlling Offie) I . SECURITY CLASS. (of this report)
Wright Patterson Air Force Base UNCLASSIFIED
U.S. Air Force
Air Force Avionics Laboratory IS. DECLASS)FICATION/ DOWNGRADING
Wright Patterson AFB, Ohio 45433 SCHEDULE

IS. DISTRIBUTION STATEMENT (of thi., Repot.)

Approved for release: distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Ofock 20, ft different front Report) #

I8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continua on Paperse side it necessary and identify by block number)

Key Words: Digital Image Processing, Image Restoration,
Scene Analysis, Image Understanding,
Edge Detection, Image Segmentation, Image Matching,
Texture Analysis, VLSI Processors.

20. ABSTRACT (Continue on Prae saide It necessary and identify by block n.mber)

This technical report summarizes the image understanding and
VLSI system research activities performed by the USC Image
Processing Institute and the Hughes Research Laboratories during
the period of 1 April 1980 through 30 September 1980 under
contract number F33615-80-C-1080 with the Defense Advanced
Research Projects Agency, Information Processing Techniques
Office. This contract is monitored by the Air Force Wright

DDFOR"
DD JAN 7 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED i

SECURITY CLASSIFICATION OF THIS PAGE (.hen Dote Fnteterd)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Whon Date Entered)

Aeronautical Laboratories, Wright-Patterson Air Force Base,
Dayton, Ohio.

-The purpose of this research program is to develop techniques
and systems for understanding images, particularly for mapping
applications. The research activity includes low level image
analysis and feature extraction, statistical and structural
texture analysis, symbolic image representations, and image to
map correspondence using relational structures. Additional
activity is concerned with VLSI architectures for implementation
of image analysis and image understanding operations.

UNCLASSIFIED
SECURITY CLASSIFICATION OF rw, AGE'who.).to F.

ABSTRACT

This technical report summarizes the image understanding and VLSI

system research activities performed by the USC Image Processing

Institute and the Hughes Research Laboratories during the period of 1

April 1980 through 30 September 1980 under contract number

F33615-80-C-1080 with the Defense Advanced Research Projects Agency,

Information Processing Techniques Office. This contract is monitored

by the Air Force Wright Aeronautical Laboratories, Wright-Patterson

Air Force Base, Dayton, Ohio.

The purpose of this research program is to develop techniques and

systems for understanding images, particularly for mapping

applications. The research activity includes low level image analysis

and feature extraction, statistical and structural texture andlysis,

symbolic image representations, and image to map correspondence using

relational structures. Additional activity is concerned with VLSI

architectures for implementation of image analysis and imaje

understanding operations.

iI

TABLE OF CONTENTS

PAGE

1. RESEARCH OVERVIEW .. 1

2. IMAGE UNDERSTANDING PROJECTS

2.1 More Results on Application of Relaxation Matching

- K.E. Price ... 4

2.2 Determining Spatial Relationships Between Texture

Primitives in Homogeneous Regular Textures

-F. Vilnrotter, R. Nevatia, and K.E. Price 10

2.3 Non-Supervised Learning by SVD for Texture Analysis

- B. Ashjari ... 26

2.4 A Best-Fit Model Approach to Markov Texture Synthesis

- D.D. Garber and A.A. Sawchuk 38

2.5 Additional Texture Synthesis Models and Results

- D.D. Garber and A.A. Sawchuk 54

2.6 Runway Detection in Aerial Images of Airports

- K.R. Babu .. 76

2.7 Shape Matching Using Hierarchical Gradient Relaxation $
Technique

- B. Bhanu arid O.D. Faugeras 85

2.8 Shape Description of Occluded Objects Using Coordinated

Hierarchical Gradient Relaxation Method

- B. Bhanu and O.D. Faugeras 113

2.9 Computation of Features inthe Analysis of Images of Moving

Objects

- B. Bhanu ... 137

2.10 Region Descriptions Using Range Data

- A. Huertas, S. Inokuchi and R. Nevatia 155

3. HARDWARE IMPLEMENTATION OF IU ALGORITHMS

3.1 Advanced Image Understanding Using LSI and VLSI

- S. D. Fouse, V.S. Wong, and G.R. Nudd 164

4. RECENT INSTITUTE PERSONNEL PUBLICATIONS AND PRESENTATIONS 205

ii

1. RESEARCH OVERVIEW

This report describes the results of our research under contract

F-33615-80-C-1080. This report also contains results of research only

partially supported by this contract. Our research includes work at

many levels of an Image Understanding system, including low level

feature extraction, symbolic descriptions and image matching. We have

also been working with Hughes Research Laboratories on hardware

implementation of IU algorithms, using VLSI technology. The research

results are summarized below.

Image Matching

Matching of an image to a symbolic map, or a symbolic description

of another image, is central for the tasks of map updating and change

detection. In the past we have described results using aerial images

and a relaxation matching algorithm developed by Faugeras and Price.

Some new results using this algorithm are described in section 2.1.

Texture Analysis and Synthesis

Presence of texture is a dominant cause of difficulty in the

analysis of aerial images. We have continued development of several

texture analysis and synthesis techniques.

In previous work, we developed techniques of structural texture

analysis by examining repetition patterns of micro edges. These

techniques obtained isolated 2-dimensional texture primitives and the

period of repetition, if any. For complex textures, the texture

primitives of different kinds are also related in certain ways, and in

some cases, a "super-primitive" is repeated regularly. Section 2.2

describes techniques for computing relations between texture

primitives.

A technique of texture analysis by Singular Value Decomposition

(SVD) is described in section 2.3. This section describes new results

of research supported by earlier contracts, and this work is not being

actively pursued now.

Results of texture synthesis using stochastic models are given in

sections 2.4 and 2.5. Synthesized textures have very similar

appearance to the corresponding natural textures.

Shape Description and Matching

Shape of structural objects can be described by relationships of

their components. A technique of connecting fragments of runway

descriptions into complete runways is given in section 2.6.

Sections 2.7 and 2.8 describe use of hierarchical gradient

relaxation techniques for matching of shapes including scenes with

occlusion.

Other IU Projects

Sections 2.9 and 2.10 present new results of previously reported

projects on motion detection and range data processing.

Hardware Implementation

In continuing work with Hughes Research Laboratories, Malibu,

California, we are investigating the use of VLSI tecnnology for

hardware implementation of IU algorithms. We have chosen to

investigate the following algorithms initially:

2

i) Nevatia-Babu Line Finder

ii) Ohlander Region Segmentor

iii) Laws Texture Analysis System

The choice of the above three algorithms was based on theii

computation intensive nature, their use for a broad range of problems

and experience with a large number of images for the first two. Also

these algorithms are largely local and hence easier to implement in

VLSI hardware, where reducing interconnections is important. Further,

the three algorithms have common kernels, such as convolution, but

also require different subsequent processing.

Detailed logic designs resulting in estimates of gates and the

number of chips required to implement the line finder and texture

system have been completed and reported in Section 3. Also, we have

identified a common kernel for these algorithms and designed a modular

programmable digital processing element RADIUS. It is based on novel

concepts of residue arithmetic and car perform a variety of local area

processing operations including convolution with very high circuit

function density.

3

2. IMAGE UNDERSTANDING PROJECTS

2.1 More Results on Application of Relaxation Matching

K.E. Price

The relaxation algorithm was described in detail in the previous

semi-annual report so it will not be discussed here. In this one we

will only present some additional results. In one of the images of

the previous report there were 3 clusters of tanks with 14, 11 and 6

objects in each of the groups. Fig. 1 gives the results for the

matching of these 3 groups. The segmentation of what should have been

TIO and T14 in the upper group was imperfect. T14 was matched to a

fragment but T10 was not. Fig. 2 illustrates how the most likely

match changes through the micro and macro iterations described

previously. Initially, the tanks are assigned based only on feature

values, so that all are assigned to the image segment closest to the

model tank size. After a few micro iterations, the relations become

more important and some assignments become stronger. By the second

macro iteration, the relations contribute enough to the initial

assignments that they are mostly correct, which is not the case of

potential assignments at the end of the first macro iteration.

4

Model Image Model Image

0 .22 1 0 .25 1

0 .23 2 .26 2

02 2.2 3

0.39 4 5 4

O\.52 5 0 .85

6 56

0 .22 7 0 .47

®.22 9 .30
34

143

@ 39 ~ ~12@.42

13431

.3 .
@ 14 14

Initial assignments Micro iteration 1

Fig. 2 Sequence showing the changing most likely assignments
for all objects in the top cluster of tanks (Fig. 7).
The initial assignments are given with the results for
each micro iteration. At the end of the macro iteration
several units are labeled (indicated by *), and these
labels are carried to the following iterations (indicated
by **). In the later macro iterations the assignments
do not change so that the results are indicated with the
initial likelihood values.

6

Model Image Model Image

Q .31 1 0-32 1

(D .31 2 0\.34 2

263 3

344 324

OV65 715

616 636

7 27.2

6 . 68

298

9 26

43 11 44

.9
® .54

@©1 12

- 4713 (.5113

14 14

Micro iteration 2 Micro iteration 3

Fig. 2 continued.

7

Model Image Model Image

@ .36 1 .45 (.61) 1

O\32 .92 (.99) 2*
.58 (.76) 3

S4 .8 4 4*

1.0_5* ___.0___._o __ -

* 96* 1.0 *

G 17 Q .33 (.50)7

- 38 .33 (.51) 8

- 99 .76 (.85) 9*

51(.19) 10

.8© .-37 (.63) 11

@ .74 @ (5 (.79) 12*

S5213 .43 (.5 13

.413 (.42) 14

Micro iteration 4 Macro iteration 2
End of macro iteration 1 Initial assignments

and micro iteration 5

- in parenthesis.

Fig. 2 continued.

8

Model Image Model

.87 (.98) 1* 1. 1*

01.0 2** Qi.o 2**

1.0 3** 01.0

®1.0 4** ®1.0 **

01.0 5** 5_.o_ __

®1.0 61**.o 6.

Q0.43 (.58) 7 (.70 (.90) 7*

®.58* 1®io 8**

®1.0 9** @L___________ 9 **

.10 (.55) 10 0.1 (.19) NIL

.6 (.98) 11* @1.0 **

@ 1.0 12**)1.0 12**

.83 (.97) 13* @ 1 .0 13**

.17 (.58) 14 21 (.56) 14

Macro iteration 3 Macro iteration 4
Initial assignments Initial assignments

and micro iteration 6 and micro iteration 7
6 - in parenthesis. 7 - in parenthesis.

Fig. 2 continued.

9

2.2 Determining Spatial Relationships Between Texture Primitives

in Homogeneous Regular Textures

F. Vilnrotter*, R. Nevatia, and K.E. Price

Introduction

In previous reports, we have described programs used to generate

descriptions of natural textures [1-2] and extract and describe

texture primitives 13]. (These reports also contain a discussion of

other work and a list of related references). Short descriptions of

these programs may also be found in [4-5).

In the first part of the program edge repetition arrays are

produced using the edge and direction images corresponding to the

original image (an edge repetition array is the binary case of a gray

level co-occurrence matrix). These arrays are calculated for 6

directions (0, 30, 60, 90, 120, and 150 degrees), for both dark and

light intensity objects, at distances within a range specified by the $
user. A comprehensive discussion of edge repetition arrays is given

in [1).

In the second part of the program the edge repetition arrays are

analyzed to determine whether there are predominant element sizes in

any of the 6 scan directions and if so whether these elements occur at

regular intervals within the image. The details of this analysis are

presented in (21 and will not be repeated here.

In the third part of the program groups of texture primitives are

extracted and described, using the texture descriptions generated in

part 2. Primitives are represented as masks. These masks are then

*Felicia Vilnrotter is supported by a Hughes Aircraft Company Doctoral

Fellowship.

10

individually analyzed to determine the characteristics (average size,

intensity, etc.) of each primitive group. The details of the

primitive extraction and description processes are given in (3].

To summarize: analysis of edge repetition arrays provided one

dimensional texture descriptions. These descriptions are the starting

point for a two dimensional texture primitive search. The products of

this search are a set of texture primitive masks and descriptions.

Up to this point the only descriptive information we have

relating to the arrangement of the texture primitives is the element

spacing information produced in part 2. However, this information

pertains to only a single scan direction. Therefore, we can tell only

if a certain group of primitives in periodic in one direction and if

so, what period is exhibited. When no element spacing can be found

for any of the elements within a texture, the texture pattern is

assumed to be random.

In the event that we are considering a non-random texture pattern

the spacing information described above is not sufficient to

characterize the particular placement rules within the texture.

Consider the 2 brick patterns in Figure 1 (a and b). These

patterns are similar in that each contains light and dark textural

elements which are rectangular and are arranged in a regular pattern.

The arrangement of the bricks within the patterns is different, but no

evidence of this difference is given in their primitive descriptions

(see Figure 2 a and b). Both sets of bricks were detected by scanning

vertically. Both exhibit an element spacing in this direction.

However, a definitive description of element arrangement is lacking.

This placement information is contained in the primitive masks and

composite images. (see figs. 3 and 4), and is the object of analysis in

the next program section.

11J

UO WJ

Fure 1.m

-2

PRIMITIVE ANALYSIS FOR BRICK 1

RELATIVE INTENSITY IS LIGHT DIRECTION IS VERTICAL

NUMBER OF SAMPLES: 87 PRIMITIVE NUMBER IS: 1

AVERAGE PRIMITIVE DIMENSIONS ARE: (2.00 AND 52.92)

AVERAGE PRIMITIVE SIZE IN PIXELS IS: (105.39)

AVERAGE PRIMITIVE INTENSITY IS: (120.80)

PRIMITIVES REPEAT AT ELEMENT SPACING: (15.00) IN ABOVE MENTIONED DIRECTION

RELATIVE INTENSITY IS DARK DIRECTION IS VERTICAL

NUMBER OF SAMPLES: 106 PRIMITIVE NUMBER IS: 2

AVERAGE PRIMITIVE DIMENSIONS ARE: (10.00 AND 35.34)

AVERAGE PRIMITIVE SIZE IN PIXELS IS: (353.14)

AVERAGE PRIMITIVE INTENSITY IS: (100.59)

PRIMITIVES REPEAT AT ELEMENT SPACIN,: (15.00) IN ABOVE MENTIONED DIRECTION

Figure 2a. Brick pattern 1 primitive texture
element description.

13

PRIMITIVE ANALYSIS FOR BRICK 2

RELATIVE INTENSITY IS LIGHT DIRECTION IS VERTICAL

NUMBER OF SAMPLES: 39 PRIMITIVE NUMBER IS: 1

AVERAGE PRIMITIVE DIMENSIONS ARE: (2.00 AND 145.26)

AVERAGE PRIMITIVE SIZE IN PIXELS IS: (289.87)

AVERAGE PRIMITIVE INTENSITY IS: (175.44)

PRIMITIVES REPEAT AT ELEMENT SPACING: (12.00) IN ABOVE MENTIONED DIRECTION

RELATIVE INTENSITY IS DARK DIRECTION IS VERTICAL

NUMBER OF SAMPLES: 122 PRIMITIVE NUMBER IS: 2

AVERAGE PRIMITIVE DIMENSIONS ARE: (8.00 AND 40.93)

AVERAGE PRIMITIVE SIZE IN PIXELS IS: (326.57)

AVERAGE PRIMITIVE INTENSITY IS: (134.25)

PRIMITIVES REPEAT AT ELEMENT SPACING: (12.00) IN ABOVE MENTIONED DIRECTION

Figure 2b. Brick pattern 2 primitive texture
element description.

14

- a m

(a) Brick pattern 1 (b) Light brick pattern 1
composite primitives, primitive found in vertical

scan.

$

(c) Dark brick pattern 1 primitive
found in vertical scan.

Figure 3.

15

Li -I

(a) Brick pattern 2 (b) Light brick pattern 2
composite primitives, primitive found in vertical

scan.

(c) Dark brick pattern 2 primitive
found in vertical scan.

Figure 4

lb

Methodology

Individual primitive masks provide the locations of all the

primitives of a particular type within an image. Determininy the

predominant placement rules exhibited by these elements can be divided

into a number of independent subtasks:

1) It must be determined whether 2 primitive masks represent the

same textural elements. This situation arises when a textural element

is detected in more than one scan direction.

Implementation - the 2 masks under consideration are ANDED to

create a new mask. If the resulting mask contains more than a given

percentage of the non-zero points of either of the original masks the
2 masks are combined and their descriptions are linked. All pairs of

primitive masks are tested and the result is a new set of masks and a

reduced primitive list.

2) Inter-primitive distances will be measured along the lines

connecting primitive centroids. Therefore, all primitive centroids

must be known.

Implementation - each primitive in each primitive mask is

catalogued along with coordinates of its center of mass and its

primitive type. An image containing the index into this list in the

locations corresponding to the non-zero entries of the mask for that

particular textural primitive is created for future reference during

the matching process.

3) From the primitive centroids the image will be scanned in 12

directions in the search for predominant spatial relationships.

Implementation - the scan originating at the center of mass of a

primitive proceeds in each of 12 directions. When a different

primitive is encountered its type, say A, and centroid location are

17

noted. The angle and distance between the 2 centroids is also noted

and a 1 is added to the bin indexed by that primitive type (A), the

angle (within 10 degrees), and the distance (within 3 pixels). All of

the results of the scans originating from the same primitive type are

considered together. They are stored in a temporary matrix for

further processing. Only the spatial relationships which occur most

frequently are part of the final results.

4) The raw counts of primitive matches must be normalized and

thresholded so that only the matches occurring most often will be

considered.

Implementation - All matches generated by starting from the

centroids of a particular type of primitive, say A, are stored in a

temporary matrix. The following steps are then taken:

(i) Each entry is normalized as follows. Let M-# Matches from

primitive type A to primitive type B at angle 6 and distance D. Then

Normalized (M) = 100 x M
Normalized () T (#Rows-D Sine)(#Cols-D CosO)
#(Prims.of Type A)a- (#Rows x #Coli)

(ii) All matrix entries greater than or equal to a certain

threshold, (THRl*Maximum Matrix Value), are replaced by the sum of 9

entries. These 9 entries are those whose degree and distance indices

are not different from the original entry's indices by more than 1.

This should insure that any large volume peak which is spread out will

not be passed over in the next thresholding process.

(iii) A new matrix maximum, NEWMAX, is calculated. Any entry

greater than or equal to a certain threshold, (THR2*NE MAX) which is

also a local maximum is added to the set of final results.

These final results are a set of spatial relationships of the

form:

18

PRIM1 A PRIM2 = B Angle = e DISTANCE D PERCENTAGE = P

This relationship states that the centroid of a primitive of type A is

separated from the centroid of a primitive of type B by a distance of

D pixels at angle 6 P percent of the time that a primitive of type A

is encountered.

Results

The spatial relationships generated for the 2 brick texture

patterns are tabulated in figures 5a and 6a. Please note that angles

are found to the nearest 10 degrees, distances to the nearest 3

pixels. The salient spatial characteristics of Brick Pattern 1 (BPI)

are captured in the spatial relationships generated for this pattern

(see figure 5a). Now consider Brick Pattern 2 (BP2). The primitive

placement results or spatial relationships given in figure 6a are not
as strong as the results for the first brick pattern. All of the

spatial relationship percentages for BPI are above 40%, while there

are none above 40% for BP2. Also, there are many more relationships

listed for the second pattern.

A comparison of the brick primitives of BPI (figure 3c) with the

brick primitives of BP2 (figure 4c) will help to provide some of the

reasons for this difference. Many of the brick primitives in figure

4c are connected to neighboring bricks or mortar due to missing edges.

When 2 bricks are connected to form one primitive its centroid wll

appear directly in line with the centroids of the bricks above and

below it. If this happens enough times the brick primitive will

appear to be related to itself at angles of 90 and -90 degrees. This

relationship does appear in figure Ga with a relatively high

percentage or relational occurrence rate. Along with this effect

there is the lowering of the percentages of the actual (or correct)

primitive relationships making thresholding less effective.

Intermittently the vertical strips of mortar separating neighboring

19

Brickl Primitive Placement Results

ANGLE1 DISTANCE TOTAL
PRIM1 PRIM2 (DEGREES) (PIXELS) (%)

1 1 -90 15 52.90

1 1 90 15 52.90

1 2 -90 6 61.36*

1 2 90 6 52.25*

2 1 -90 6 42.38

2 1 90 6 50.53

2 2 -180 45 64.09*

2 2 -90 15 94.55*

2 2 0 45 63.12*

2 2 90 15 94.55*

*These are used in part b.

1Negative angles are counter-clockwise; positive angles are
clockwise.

Figure 5a. Brick pattern I interprimitive angle in degrees,
distance in pixels and frequency of occurrence.

20

A A

V 'pr// 44 V17777 U71

Figure 5b. Brick pattern 1 texture reconstruction
using information in a.

21

Brick2 Primitive Placement Results

ANGLE1 DISTANCE TOTAL
PRIM1 PRIM2 (DEGREES) (PIXELS) (%)

1 1 -90 12 18.28*
1 1 -50 15 13.11
1 1 -40 21 13.20
1 1 0 132 15.48*
1 1 90 12 18.27*
1 1 130 15 13.14
1 1 140 21 13.26

1 2 -170 18 18.48
1 2 -170 24 13.34
1 2 -170 30 16.17
1 2 -30 12 23.48*
1 2 0 48 13.68
1 2 0 72 14.14
1 2 10 24 18.52
1 2 10 33 18.76
1 2 80 6 20.70
1 2 100 6 18.11

2 2 -160 24 30.56*
2 2 -90 12 22.24
2 2 -30 27 27.03
2 2 0 24 19.93
2 2 0 45 33.00*
2 2 20 24 30.38*
2 2 90 12 23.10
2 2 150 27 26.32
2 2 180 24 20.08
2 2 180 45 32.57*

*These are used in part b,

1Negative angles are counter-clockwise; positive angles are
clockwise.

Figure 6a. Brick pattern 2 interprimitive angle in degrees,
distance in pixels and frequency of occurrence.

22

I .. .Z444 . _7W,, 1.
I ?/ €,? -,3i,;, -i -- --S-P

Figure 6b. Brick pattern 2 texture reconstruction
using information in a.

23

bricks appear as separate primitives. This is responsible for the

occurrence of the horizontal brick relationships for BP2 at distance

24 with percentage 19.93 for 0 degrees and 20.08 at 180 degrees.

Type 1 primitives, the horizontal mortar strips, are also a

problem. (Compare figure 3b for BPl with figure 4b for BP2). In BP2

the mortar strips are connected to form primitives which are too long

to generate meaningful spatial relationships and too short to be

considered as part of the background.

In spite of these problems a systematic search of the information

in figure Ga can lead to a reasonable structural description of the

texture pattern. First try to establish the repetition pattern of

each set of primitives along 2 non-colinear lines. Hopefully this can

be done for at least I primitive set. Starting with the strongest

grid pattern established try to relate all other primitives to the

primitives composing this grid.

In BPl the only primitive with spatial relations in 2

non-colinear directions is primitive 2, the brick primitive. It forms

a rectangular grid pattern since its spatial relations occur at angles

-180, -90, 0, and 90 degrees. The mortar primitive, primitive 1, is

related to the brick primitives by vertical spatial relationships at

distance 6. Using the primitive analysis information in figure 2a the

textural pattern can be filled in to produce figure 5b.

In BP2 the primitive exhibiting the strongest spatial

relationships is the brick primitive, primitive 2. Its strongest

spatial relationships occur at 0 and 180 degrees at a distance of 45

pixels and at -160 and 20 degrees at a distance of 24 pixels. The

mortar primitives form a rectangular grid pattern using the

relationships at 90, -90, and 0 degrees. Note that the distance of

132 pixel at 0 degrees is reasonable because the image is only 256x256

pixels. Hence 2 complete mortar primitives at approximately 145

pixels across could not both fit along the same horizontal line within

24

-- e

the image.

The disparity of primitive sizes, 40 pixels long for primitive 2

and 145 pixels long for primitive 1, will lead to many different

angular relationships between primitives of type 1 and 2. It is

necessary only to verify that they are related in some way so that the

2 grids can be interposed at the proper angle and distance. The

strongest relationship is at -30 degrees and a distance of 12 pixels.

At this angle and distance it would seem that the 2 primitive types

actually form alternate rows. Using the primitive analysis

information in figure 2b the textural pattern can be filled in to

produce figure 5b.

The systematic interpretation of the relational results of

figures 5a and 6a has not yet been automated and the patterns

displayed in figures 5b and 6b have been generated by hand. For such

a scheme to be successful the patterns under analysis must be

homogeneous regular texture patterns.

Conclusion

Work on this program is still in progress. It is hoped that the

relational information produced will lend itself to automatic

interpretation. This would lead to the generation of more definitive

descriptions of homogeneous regular textures.

References

[i]. R. Nevatia, K. Price and F. Vilnrotter, "Describing Natural

Textures," USCIPI Semiannual Technical Report #660 march 1979,

pp. 29-54.

(2]. F. Vilnrotter, R. Nevatia and K. Price, "Automatic Generation of

Natural Texture Descriptions," USCIPI Semiannual Technical Report

#910, September 1979, pp. 31-63.

25

[3). F. Vilnrotter, R. Nevatia, and K. Price, "Extraction of Texture

Primitives," USCIPI Semiannual Technical Report #960, March 1980,

pp. 48-59.

[4]. R. Nevatia, K. Price, and F. Vilnrotter, "Describing Natural

Textures," Proc. of the Sixth IJCAI-79, Tokyo, Japan, August 1979.

[5]. F. Vilnrotter, R. Nevatia, and K. Price, "Structural Description

of Natural Textures," To appear in Proc. of the Fifth IJCPR-80, Miami,

Florida, December 1980.

2.3 Non-Supervised Learning by SVD for Texture Analysis*

B. Ashjari

Introduction

Singular value decomposition is a technique of matrix

transformation which has been used as a linear algebraic method for

obtaining least square solutions for a set of homogeneous equations

[Il. SVD has also been used for calculating the pseudo-inverse of a

matrix (2]. In the field of image processing where large matrices of

data such as pictures are dealt with, SVD can play an important role

in extracting the most useful information from an exorbitant amount of

highly correlated data. SVD, therefore, provides a tool for image

compression and efficient picture transmission [3].

*This section describes previously unreported results of earlier work

supported by DARPA.

26

In pattern recognition, SVD has been explored for automatic image

feature extraction and texture classification (4-5]. In this report,

a powerful technique for non-supervised learning and classification by

SVD will be discussed.

The mathematical definition of SVD is

F = U S V
T

where, the matrix F is decomposed into three matrices U, S, and V. U

and V are unitary (for complex F), or orthonormal (for real F) and S

is a real diagonal matrix which contains the positive singular values

of F in descending order. Singular values are excellent descriptors

of elemental inter-relationships in a matrix or picture which is

non-structural. An example of a structural image is that of man-made

objects; and an example of a non-structural one includes textural

images such as pictorial patterns of grass, raffia, sand, or wool.

One of the best models for image texture is a stochastic one. In

considering a stochastic model for the texture field F, the elements

of F can be considered as random variables with correlation among all

of them. Using equation (1), for decompbsiny F, the elements of U, S

and V matrices will also be random variables. It has been

mathematically proved and experimentally verified that variations of

elements in the texture field F is substantially galvanized around its

singular values rather than affecting elements of U and V [5]. This

latter property is used here for'non-supervised learning.

Two sets of experiments, one with simulated texture and the other

with natural textures, have been performed which will be elaborated

on.

27

Method of Evaluation

For evaluating the performance of SVD learning, Bhattacharyya

distance figure of merit is used. The procedure is as follows:

i) The textures' histograms are gaussianized to have zero mean and

unit variance. By taking this measure, all photographic biases are

removed and the textures will only differ in their internal shape.

ii) Non-overlapping 32x32 sample windows are extracted from each

textural image.

iii) For every sample window, a vector of singular values is

computed.

iv) Each vector of singular values is normalized.

v) From each normalized vector of singular values, mean, deviation,

skewness and kurtosis is obtained and a 4-dimensional feature vector

is formed (6].

vi) For each texture field, there are N feature vectors where N is

the number of sample windows. Using these feature vectors, the sample

mean and sample covariance are computed.

vii) Using the sample mean and covariance of each pair of texture

fields, their B-distance is computed.

Optimum Number of Samples

An experiment to determine the optimum number of samples has been

performed with 32, 64, 128 and 196 samples. It has been found that 64

gives the optimum number of samples.

28

d

Computer Simulation of Texture

The objective of this section is to generate 512x512 texture

fields which are zero mean, normally distributed, having a separable

first order Markovian covariance matrix with parameter p, where p can

be given a desired value between 0 and 1. For visualizing purposes, a

linear transformation is performed on each generated field to make it

a 8-bit (integer) picture with dynamic range of 0 to 255. Figure 1

shows 6 simulated textures with normal distribution and correlation in

row and column directions such that

1 p p2 . 31

P 1 p.... p
3 0

2 129 (2)
KC =KR= (2)

31 p30 29
P P P 1

KC and KR are column and row covariance matrices and are of toeplitz

form which implies fist order Markov behavior [7].

Unsupervised Learning with Simulated (Artificial) Texture

After generating the texture fields with various p's, 16 32x32

sample windows of texture with p=0.5 is imbedded onto texture fields

with P=0.6, P=0.7, and P=0.9. The same embedments are performed in a

reverse manner.

NOTATIONAL CONVENTION 1:

"0.5" of figure l(b) represents the texture associated with P=0.5.

"0.5/0.9" of figure 2(e) means the texture associated with =0.9 has

been imbedded in the texture associated with 0=0.9.

29

Figure 2 presents the imbedded textures for which B-distances

between various combinatorial pairs have been tabulated in Tables 1,

2, and 3.

REMARK 1: From each of the texture fields in Figure 2, 64 32x32 sample

windows are randomly selected making sure that the 16 imbedded ones

are included! This, in essence, means that for example, "0.5/0.9"

provides 75% "0.5" + 25% "0.9" for B-distance computation.

REMARK 2: Each 32x32 texture field has mean zero. Their second moment

is tr(K CK R)=tr(Kc)xtr(KR). For a toeplitz matrix of 32x32, the trace

is equal to 32. Hence, the second moment becomes

Second Moment = 32x32 = 1024

We have 256 of these matrices resulting in the second moment of the

whole 512x512 texture to be

Total Second Moment = 256x1024 = 262144

Therefore, we can conclude that all texture fields have the same mean

(0.0) and variance (262144.0).

Unsupervised Learning with Natural Texture

It has been found out that among pairs of grass, raffia, sand,

and wool textures, the highest B-distance belongs to the raffia-wool

pair [6]. In this set of experiments, 16 sample windows of wool are

imbedded onto the raffia image and vice versa. Then, the B-distances

are computed as in the simulated case. Figure 3 displays raffia, and

wool and their imbedded combinations.

NOTATIONAL CONVENTION 2:

Raffia/wool means 16 samples of wool are imbedded onto raffia

31

p ~H PANN~

I OF TE..TRE" t 4 SArMPLE

1"0.5" I "0.5/0.6" 0.1716

"0.51 t 1 0.6"11 1.5860

7 "0. 5" "0.6/0.5" 0. 5559

V------------------I--------------------I"0. 5/0. 6" f "0. 61' 0.4813

"0.5/0.6" f "0.6/0.5" I 0.1338

*------------------V--------------------I

"0.6" f "0.6/0.5" F 0.1183
V------------------I--------------------I

Table 1. B-distances for various combinatorial pairs
of simulated textures, "0.5", "0.5/0.6",
"0.6", and "0.6/0.5".

I .i - :I TrANC- t

I JI T: TJRE r,4 SAMPLES I

S"0. 5" "0.5/0.7" 0.5376
*--I
P "0. 5" T "0.7" P 6.8913
V------------------------P------ -------------- P
S"0. 5" 0 "0.7/0.5" , 1.1731
p------------------P--------------------
S"0. 5/0.7" I "0.7" 0.9745
p------------------I--------------------*
S"0 .5/0.7" t "0.7/0.5" 0.2080
V------------------P--------------------S
"0. 7" "0.7/0.5" 0.3605

I------------------S--------------------

Table 2. B-distances for various combinatorial pairs
of simulated textures, "0.5", "0.5/0.7",
"0.7", and "0.7/0.5".

34

background. Upon extracting sample windows, this embedment is equal

to 75% raffia + 25% wool.

Table 4 presents B-distances for various possible pairs.

REMARK: Each texture field is real picture with zero mean, unit

variance, and gaussian histogram.

Analysis

The analysis is presented for Table 3 for artificial textures and

Table 4 for natural ones. Table 3 is chosen because it provides

higher B-distances; and "0.5/0.9" and "0.9/0.5" are easy to visualize.

However, the same analysis can be given for Tables 1 and 2.

The B-distance between "0.5" and "0.5" is obviously zero. Table

3 shows that B-distance between "0.5" and "0.9" is 47.1449 which is

considered to be enormous. The same table displays B-distance between

"0.5" and "0.5/0.9" (i.e. 75% "0.5" + 25% "0.9") is 1.5284.

B-distance between "0.5" and "0.9/0.5" (i.e. 25% "0.5" + 75% "0.9")

is 2.5166. The drop from 47.1449 to 2.5166 is clearly an indication

that a great change in B-distance happens when 75% of "0.9" is used

instead of 100%. The drop is 47.1449-2.5166=44.6283 and is so great

that the bound of error in telling it is very close to zero.

Likewise, when "0.5" is taken with 100% of "0.5" the B-distance is

zero; but when "0.5" is taken with 75% "0.5" + 25% "0.9", E-distance

increases to 1.5284. The classification error bound for the latter is

8%. This means that the two textures which used to be the same can

now be separated with a good probability of 92% due to existence of a

foreign texture in one of them.

This is an indication of the usefulness of singular value

decomposition for non-supervised learning and classification. Table 4

displays that B-distance between raffiP and 100% wool is 11.8746. The

distance drops sharply to 1.6211 when 75% wool + 25% raffia is

35

---- - DIST-NCrL T
PAIR t -- I

I OF Tr TURE: 3 74AVOL Z I

------------ --------

1 "0.5" t 10.5/0.9" 1.5284

1 "0.5" "0.9" 47.1449
I-- - -------------------- I

1"0.5" ' "0.9/0. 5" 2.5166
------------------------------------ V

"0.5/0.9"T "0.9" 1.7812 T
--------------- I--------------------I

T "0.5'0.9" f "0.9/0.5" ' 0.3439
t------------------I------------------V
S"0.9" "0.9/0.5" 0.9081

V----------------I--------------------P

Table 3. B-distances for various pairs of simulated
textures "0.5", "0.5/0.9", "0.9", and "0.9/0.5".

V , R - oIrANr I

f PAIR
OF rE TURE3 f A RMPL f

P--------------------------------------
Raffia I Raffia/Woolf 0.7128 1

Raffia I Wool t 11.8746 1

V-------------------P------------------I
f Raffia Wool/Raffia 1.6211

fRaffia/Wool I Wool ' 1.8350
f------------------------

Raffia/Wool I Wool/Raffial 0.5033
V--------------------------- I----------------
I Wool t Wool/Raffia? 0.9625
--

Table 4. B-distances for various pairs of simulated
textures, Raffia, Raffia/Wool, Wool and
Wool/Raffia.

36

•

employed instead of 100% wool. The foreign texture (i.e. raffia)

introduced in wool causes that drop in the B-distance. This is also

clearly an indication that singular value decomposition can be used as

a means for non-supervised learning for natural textures.

As it can be observed from figure 2(a) and (b), the embedments of

"0.5/0.6" and "0.6/0.5" are barely noticeable by human eye. However,

Table 1 displays that, through the application of the technique

presented in this report, these embedments can automatically be

distinguished by computer.

References

[1]. G.H. Golup and C. Reinsch, "Singular Value Decomposition and

Least Square Solutions," Numerish Matematic, Vol. 14, 1970,

pp. 403-420.

[2]. G.H. Golup and W. Kahan, "Calculating the Singular Values of

Pseudo-inverse of a Matrix," Journal of SIAM Numer. Anal., Ser. B,

Vol. 2, No. 2, 1965, p. 250.

[3]. H.C. Andrews and C.L. Patterson, "Outer Product Expansion and

their uses in Digital Image Processing," IEEE Trans. on Computers,

Vol. C-25, No. 2, February 1976, pp. 140-148.

[4]. B. Ashjari and W.K. Pratt, "Singular Value Decomposition Image
Feature Extraction," USCIPI Report 800, Image Processing Institute,

USC, Los Angeles, Calif., March 31, 1978, pp. 72-89.

[53. B. Ashjari, Singular Value Decomposition Image Feature

Extraction, Ph.D. Dissertation, Image Processing Institute, USC, Los

Angeles, Calif., to be published.

[6]. B. Ashjari and W.K. Pratt, "Supervised Classification with

Singular Value Decomposition Texture Measurement," USCIPI Report 860,

37

Image Processing Institute, USC, Los Angeles, Calif., March 31, 1979,

pp. 52-62.

[7]. W.K. Pratt, Digital Image Processing, Wiley-Interscience, New

York, 1978.

2.4 A Best-Fit Model Approach to Markov Texture Synthesis

D.D. Garber and A.A. Sawchuk

Introduction

A method of generating texture simulations according to their Nth

order densities was investigated for binary textures in an earlier

paper (1]. The simulations resulting from this markov process

resembled quite closely their parental textures in most cases. When

applying a similar concept to multi-grey level imagery, the limits of

computer storage are soon reached. To circumvent this constraint, a

new method of texture synthesis was developed and applied to a small

number of textures. The results to present are given in this paper.

N-grams in Continuous Imagery

In the binary texture generation based on N-grams a single value

P(VN+l/VI,... ,VN) was stored for each possible pattern (V1,V2,. .,VN)

where Vi=0,1 in the binary case. This value represented the

conditional probability that the next pixel, VN+1, in the generation

process would be a 0 or black pixel. The Vi's were chosen by a best

linear model fit detailed in [2] and therefore the kernel of previous

pixels (Vl...VN) is not necessarily contiguous (see Figure 1).

Details concerning the estimation of P(VN+I/Vl,... ,VN) from a parent

38

V1 V2 ..

V4

V 1 V 2

VN.q VN+l V3 V5

Figure la. Two-dimensional synthesis Figure lb. Two-dimensional synthesis
(contiguous kernel). (non-contiguous kernel).

(a,b)

X.i,j

Figure 2. Passing kernel over
parent texture.

39

I--low

texture are given in [1). This single value is sufficient in a binary

case to define the distribution of VN+l given V1,...IVN. The number

of these values which we are required to store is 2 . In the

generation process each pixel VN+ 1 is generated based on the values of

the pixels VlI,...IVN surrounding it and on a computer-generated

uniformly-distributed random variable. The texture simulations are

generated pixel by pixel along a row until each row is complete.

Pixel generation along the edges of an image can be handled in a

variety of ways but are normally assumed to be any random value, 0 or

1, if they are outside the image boundaries.

A similar approach could be used to generate multi-grey-level

textures. For a grey-level texture, G N + values of P(VN+I/VI,...,V N)

must be stored. (Actually only (G-I)-GN are required as
G-1
Z P(X/V, ...,VN)=l for all V.). Storage limitations are soon

X=O N I
reached. Also estimation of P(VN+I/Vl,...,VN) is difficult as

multiple occurrences of the pixel pattern VI,...,V N may not exist in

the parent texture. Therefore even without storage limitations the

problems of estimating P(VN+1/Vl,..., VN), which represents the

distribution of VN+ 1 given the values of Vl,...,VN is complex.

This estimation problem no doubt has a number of ad hoc

solutions. The problem is basically that for large N and or large G,

there may not be a suitable number of occurrences of the pattern

V1 ,...,V N for certain values of V.i to adequately estimate the

distribution P(V N+/VI,..,V N) given a finite sample size. Even

though a certain pattern never occurs or rarely occurs in our sample

parent texture it is not implied that such a pattern is impossible and

will never occur in our simulation synthesis. We might often find

numerous occurrences of this pattern if our sample size or the size of

our parent texture was increased, especially in noisy and

fine-structured textures. But as this very large sample may not be

present, we must estimate P(V N+/VI,...,V N) for all V ,...,V N based on

available samples.

40

v d

One approach would be to use sample patterns which closely

resemble but which may not be exactly the same as each pattern

(V I , ... ,VN) . That is in a pictorial sense, we use patterns of

(V,..., VN) which look "close to" the pattern for which we are

attempting to estimate P(VN+l/VI,...,VN). Therefore samples in our

sample parent texture may be used to estimate numerous

P(VN+l/Vl,...,VN) and not just those they fit exactly. But the

concept of "close to" must be first numerically defined. Given two

patterns, one from our sample texture and the other from the

conditional probability we are attempting to estimate, a distance

measure used to define "close to" could be used to determine the value

of that sample in estimating P(VN+1/V I,...IVN). If the fit between

the kernel pattern and the pattern of interest is good the associated

value of VN+1 in the parent texture will be valuable in estimating

P(V N+/V l,.-,V)-

Normally, when N and G are small or we have a large number of

samples and numerous samples for any given V1, VN occur, we would $
merely use the histogram of the associated VN+1 to estimate

P(V N+/VI ...,VN). Here the relative number of times a particular
value of VN+ 1 occurs given a pattern indicates the conditional

probability we are attempting to estimate. Where a distance measure

is used instead, a good fit could be considered to be synonymous with

high frequency of that pattern and a poor fit with low frequency.

If such a method of estimating these conditional probabilities is

used we are still faced with a huge storage problem. To be practical,

the storage requirement must be reduced. From an information

standpoint, it is interesting to note that a method of estimating

N-grams or conditional probabilities P(V N+/VI,...VN) from a sample

parent texture image produces G N + data values from M2 pixel samples

where M is the size of the square parent texture image in pixels. For

large G and N this is a drastic increase in data. But the actual
information content can really never be greater than that content of

the sample parent texture image. Therefore, this M 2 value represents

41

an upper bound on the amount of data we should use to generate a

texture simulation. Any amount of data exceeding this will contain

redundant, useless data.

The Synthesis Method

Combining this concept of upper bound with the idea of forming a

distance measure to compare two texture kernel values leads to a new

texture synthesis method. In this method, we can generate the next

pixel based on the pixels in the kernel surrounding it (see Figure 1)

and their comparison to similar kernels in the parent texture. This

comparison can be accomplished by passing the kernel currently present

in the simulation process, over the parent texture and computing the

distance function at all possible points (see Figure 2). Denoting the

pixels in the parent texture by Xii, i,j=O,...,M-l and the pixels in

the kernel Vl,...,VN by Yi,j' we can compute a comparison image

C = COMPARISON(Xi+a,j+b, Y,) (1)Ca,b ajb j

for all a,b such that the kernel is within the boundaries of the

texture.

One possible comparison function would be correlation. Assuming,

without loss of generality, that our kernel is contiguous as in Figure

3 and the elements are denoted as Y--, this function would be defined

as

a,b = a-4-i [Ej j

S a+i,b+j i Xa+i b+j) iY)2 (2)

2 2ILX Xa+ib+j 2N EY Z 2 j Ni

42

The problem with this particular distance measure is quite serious.

Correlation does not take into account differences in over-all mean.

For example, the kernels in Figure 3 are perfectly correlated but

their means differ significantly.

A better choice would be the mean square difference (MSD). This

may be defined as

MSD (j (Xi+aj+b-Yi'j)2 (3)
a,b 1

where i,j must be within the coordinate range of the kernel as in

Eq. (1). This particular comparison function weights the comparison

of all elements in a kernel equally. Having studied many texture

generation models we immediately recognize that this fit is not

properly weighted. The few pixels which are closest to Ynext in

proximity are far more important when predicting Ynext than those

which are far away. So Eq. (2) may be modified to give the weighted

mean-square difference (WMSD)

WMSDa'b = i (Xi+aj+b-Yi'j)2"Wi'j (4)

A choice of W would be

I 1 (5)Wi =) 2+ 2- R

(i-inext
n(j Jnext)

43L1

S2 3 4 51 52 53 54

7 10 13 16 57 60 63 66

2 5 52 55

Figure 3. Perfectly correlated kernels.

Y5, 1

Y 6,11 nex

Figure 4. Best-fit model kernel
(contiguous).

44

6_1

where R is the euclidean distance between pixel Y and the kernel eye

Y and the coordinates of the eye are given by (inextJnext).
next nx'nx)

As the first step in comparing a given kernel Yi,j to all kernels

in the parent texture, for each point (a,b) in the parent texture,

ignoring edges, the WMSD is computed resulting in an image of WMSD's.

Where the fit between the generated kernel Yij and the image Xi j is

good, we would expect WMSDa,b to be small. The smallest WMSD

represents the "best" fit according to our norm. We could choose the

Ynext associated with this best fit at point (a,b) to be our next

pixel in the generation process, however this can cause problems.

First of all, the generation process would "lock in" on the parent

texture and the generated texture could very well become just an exact

copy of the input parent texture. Second, we know ideally that Ynext

has a distri)ution, not just a mean. In the autoregressive model [3]

we gave Ynext a distribution by adding random noise to it. We could

do that here. However we are failing to use additional information in

the WMSD image. There maybe a set of points (a,b), all exhibiting a

good fit to the kernel pattern Yij. In fact, the best fit may have a

noisy Y next and the other good fits could provide information to

improve the prediction of the Ynext in the generation process. Using

a set of best fits is equivalent to incr-asing our sample size. We

look at a set of similar patterns to pick our Ynext"

At this point there are numerous ways to proceed. Logically

those patterns with the "best" fit should provide better estimators

for Ynext so some kind of weighting decision is needed to choose the

relative importance of the WMSD's found. If we search through the

WMSD image and find the minimum value, WMSDmini and scale all the

WMSD's by that we form a new image MAX1

45

WMSD min(6)

MAX a,b = iR-- a, b

This image has the value 1.0 at the best fit point and values

0<MAX1<1.0 elsewhere.

Here we can look at the MAXl(a,b) image and study its range. If

0.16<MAXI<I.0 it is implied that the worst fit gives a 0.16 MAXI(a,b).

Somehow that worst fit should be translated to imply that the

probability of choosing the Ynext associated with that point

(a,b)worst is nearly 0.0. The simplest way of doing that is to take

powers of the image MAXl(a,b). The maximum remains 1.0 while smaller

numbers approach 0.0. For example (1.0)10=1.0 but (0.16)1 0 =1x10- 8 .

We do this to obtain some kind of estimate of P(Ynext/Y i). After

studying the values of MAXI(a,b) and its powers, the value of 16 was

chosen and a new image PDFUNS

PDFUNSab = (MAXI b)16 (7)

was chosen to estimate the probability density function P(Ynext/Yij

PDFUNS can be scaled so that Z PDFUNS(a,b)=I. Then a uniformly
a E DUSab=. Te nfrl

distributed random variable, r, [0,1] is generated and a point (c,d)

is found such that

c-1 d-1

E E PDFtJNS ab+E PDFUNS b<r
a= b a,b b=1cb

(8)

c-I d

E E PDFUNS + E PDFUNS > r
a= b a,b b= 1 c,b

The Y associated with the kernel shape at (c,d) is then used as
next

46

the next pixel in the generated image. The process is continued until

a full texture image is generated with the kernel window moving one

pixel at each step, row by row.

Results

For a kernel containing 55 pixels (see Figure 4) passed over a
6

128x128 parent texture approximately 7.2x10 operations (additions or

subtractions) are needed to get the WMSD image defined by Eq. (4).5 a,b

Another 2.6xi0 are required to find the next pixel according to

Eq. (8). therefore, to generate a 512x512 texture requires only
12

1.96XI10 (2 trillion) operations.

Results from texture synthesis done by this method are shown in

Figure 5 through 9. Each of these images is 512x512 pixels. A

128x128 section of each original (parent) texture was used for the

simulation. Bark exhibits very large macro structure and this is lost

in the simulation. A similar thing happens with raffia as the kernel

size is smaller than the cell size of the original texture but is not

as pronounced. The top part of the bubbles texture was generated

using a 128x128 portion different than that of the bottom part. For

this reason the top 20-30% of the texture looks different from the

rest. The large number of operation makes this process very time

consuming even where a pipelined processor is dedicated to the task.

About 5.5 days of dedicated time on an AP120B are required to generate

each texture.

This method is of little use at present due to the computational
complexity of the algorithm but a few points should be brought out.

With constantly increasing computer processing speeds, a simplified

version of this texture simulation method may be implemented in the

near future. It is even possible that such computations could be

performed by a properly constructed architecture of micro processors.

In any case such brute-force approaches are in many aspects simple and

could be made cost-effective in the future. The results also indicate

47

Figure 5a. Original bark.

484

-- now

A~AA*

, 10

r~...

04bS nw

~ CAF

-. Z~ .'.~ ~\\ 'A

Fiur 6a. ri gia cloth.

p Ap

,49

x .3~~*

IMF. ~ ~

It'~

*~06

Figure 7a. original sand.

'A'* k6,

-4

Figure 7b. Simulated sand.

50

At---.

., .,4 .w
.Ai.

Figure~~~~ Jb iuae afa

a 4 11 e
r2

Figure 8a. Original raffia.

- -~ - .

.IaA;~
$z-

Figure 8b. Simulated raffia.

51

Figure 9a. Original bubbles.

. .a
Ism.

ItoI

visually the amount of texture information present in a 55 pixel

window (see Figure 4) as at each pixel generation step, the next pixel

in the Markov process depends on only the pixels in this neighborhood.

Finally, this approach is admittedly ad hoc. Numerous distance

measures could replace the one chosen in this work and each would give

different, either better or worse, results. It is always important

that the process be random and not merely copy the texture sample.

This type of non-random process will generate patterns quickly

observable if the simulation is much larger than the original. In

other words, the histogram represented by P(VN+l/V 1 ,VN) should

rarely be a delta function. A reduction in the number of computations

could be made if the kernel was non-contiguous. Also, better results

could probably also be obtained if the kernel window was larger. The

shape, contiguity and size of the kernel in this study was chosen

primarily for computer programming considerations.

Conclusion

The results from this best-fit texture synthesis method are very

pleasing but the number of computations required is large. Other

similar algorithms could be developed which are simpler and could

possibly produce even better results. With the decrease in

computation costs and the increase in processor speeds of future

computers, such texture synthesis methods could be easily implemented

in the future.

References

[1]. D.D. Garber, "Models for Texture Analysis and Synthesis," USCIPI

Report 910, 1979.

[2]. D.D. Garber, "Application of the General Linear Model to Binaty

Texture Synthesis," USCIPI Report 960, 1980.

53

[3]. D.D. Garber and A.A. Sawchuk, "Higher-Order Texture Synthesis

Models and Residual Examination," USCIPI Report 960, 1980.

2.5 Additional Texture Synthesis Models and Results

D.D. Garber and A.A. Sawchuk

Introduction

In earlier work, a second-order linear texture synthesis model

was proposed. In this paper additional results of simulations using

that model are given. Also, some results of simulations using

non-gaussian, non-normal noise are presented. Synthesis methods

designed to generate textures regardless of magnification are

developed. Preliminary results on use of multiple linear models for

texture synthesis and the use of the covariance matrices to segment

textured images are briefly discussed. A method for making textures

non-stationary through post-processing is also examined.

Second-Order Markov

First-order linear autoregressive models were among the first

approaches to texture synthesis [1,2). The results were appealing and

it was believed that further improvements could be made by expanding

to a second-order model [3]. Initial results showed only a slight

visible improvement on the texture sand (see Figure 2). It was felt

that additional work should be done on other textures to determine the

improvement due to the second-order model and that texture models

employing non-gaussian and possibly non-stationary noise be

investigated based on the results in [3].

54

Vv N VN 1

Figure 1. Two-dimensional synthesis
(contiguous kernel).

55

(a) Original SAND. (b) Simulated SAND with
cross-products.

Aff

(c) Simulated SAND with
non-stationary noise.

Figure 2.

56

In the linear autoregressive model, each pixel, V N+I in the

synthesized texture is produced by computing a linear combination of

the pixels V. in the kernel surrounding it (see Figure 1) plus noise

C. That is

VN+1 = 1+ 2V2+...+ NVN+N+r. ()

The noise e was assumed to be independent, stationary gaussian noise

with zero mean and fixed variance. A linear second-order model is

formed by adding all possible cross-product terms and the model

becomes

VN+ V+a2V+...+a VN+ V 2 VIV. + .+ V2
+N+1 1122 'NN 011112 1 2 NN N+

N N N (2)

i=1 j=1 j3 0

Adding second-order terms to a model will always produce a fit as good

as or better than a first-order model but the number of computations

required to compute the coefficients and fit the model are much

greater.

Inside a circular radius of 14 pixels from VN+ 1 there are 307

pixels. To search all possible cross products in this region to find

the most significant would require over 47,000 cross products to be

examined. Computation of a covariance matrix containing all of these

terms is impossible (in practice). In our study we were limited to

investigate only 820 possible cross products for entry into the

generation model. As most of the variance was explained by the linear

terms of the model, most of the cross products were insignificant from

a statistical point of view. This selection procedure is detailed in

(2]. Those that were significant were entered into the model and a

new texture was generated using Eq. (2) with stationary gaussian noise

and with zero mean and fixed variance. The results are shown in

57

Figures 2 through 5.

Applying this model to the original image data gives a residual

error image. The distribution of this error and the relationships

between the predicted and actual pixel values can be studied. Based

on this work a method of generating textures using non-stationary

noise was developed. A histogram of error as a function of predicted

value, VN+l, can be formed. This, in turn, can be used to generate

errors, E, during the synthesis process. That is, at each pixel a

VN+ 1 is predicted according to Eq. (2) excluding the error term and

associated with that predicted value is a distribution of error (which

is likely to be non-normal and even non-zero in mean) from which a

random error value can be chosen to be added to VN+l. The next pixel

will then be computed in a similar manner. Results of texture

synthesis formed using this model are shown in Figures 2-5.

In most cases, considerable improvement is seen when these

simulations are critically observed. Of course, the information

required to generate them is considerably greater also. The

distribution of errors as a function of VN+1 must be condensed and

coded to some degree to minimize storage requirements. For a

256-grey-level image VN+ 1 can range from -50 to 305 and the errors

from -255 to +255. This would yield quite a large amount of data if

fully stored. By storing a small number (under 100), typical errors

for each range (and not each single value) of VN+ 1 the number of data

values we are required to store can possibly be reduced to under 1000.

More experimentation on these coding techniques remains to be done.

Skip-Generate Method

Simulating textures which have a fine structure is a much easier

process than simulating textures with coarse structure. This is

because the linear model will contain fewer terms if the texture

pixels become uncorrelated over a small distance. For the same

texture at a greater magnification, the pixels become highly

58

'II

(a) Original BARK. (b) Simulated BARK with
cross-products.

J4 4

(c) Simulated BARK with
non-stationary noise.

Figure 3.

59

(a) Original GRASS. (b) Simulated GRASS with
cross-products.

(c) Simulated GRASS with
non-stationary noise.

Figure 4.

60

(a) Original RAFFIA. (b) Simulated RAFFIA with
cross-products.

(c) Simulated IRAFFIA with
non-stationary noise.

Ficlure 5.

61

correlated and the linear model will be forced to contain more terms.

As the texture becomes more coarse, more time-consuming statistical

measurements must be taken on the parent texture over larger windows.

To circumvent this problem, a new texture generation method must be

developed.

In the texture work so far (1-3], pixel VN+ 1 was generated based

on pixels above or to the left of it (see Figure 1). As was discussed

in [2), the kernel does not have to be contiguous. This shape is

chosen to insure that the image space of our synthesized texture was

filled during the generation process. However, generating pixels

along a row, row by row is not the only way of filling an image space.

Consider the non-contiguous kernel mask in Figure 6. If the

spacing between the pixels in this mask is 8, using the linear model

in Eq. (1) to generate the right-most pixel in the bottom row, we can

generate every 8th pixel along every 8th row. At each step the next

pixel is generated based on the previously-generated pixels around it

(ignoring boundary conditions). After generating an image with this

type of spacing, the pixels midway between the previously-generated

pixels on each row may be generated using the mask in Figure 7. In

this mask, the pixel with the "x" in it denotes the next pixel, VN+1 ,
to be generated according to Eq. (1). Naturally, the linear model
used in this step will have different coefficients than the previous

one. it is also interesting to note that new pixels do not depend

only on previously generated pixels above them (as with the mask in

Figure 1) but depend also on the pixels below them. But still,

ignoring boundary conditions, each pixel depends only on previously

generated pixels. At the next step a mask similar to that in Figure 8

can be used to fill in the pixels midway between the

previously-generated pixels in each column. Again pixels are allowed

to depend on pixels around them.

By repeatedly using the masks in Figure 7 and Figure 8 with

successively closer and closer pixel spacing, the texture simulation

62

E

Figure 6. First-Pass Mask.

~El D00 0

0Ell

Figure 7. Second-Pass Mask.

63

SLI LI LI I LI LI

Figure 8. Third-Pass Mask.

16462646164626461
77777777777777777
56565656565656565
77777777777777777
36463646364636463
77777777777777777
56565656565656565
77777777777777777

16462646164626461

77777777777777777
36463646364636463
77777777777777777
56565656565656565
77777777777777777
16462646164626461

Figure 9. Filled space of skip-generate method.

64

image space is filled. An example showing the pixels generated at

each successive pass is shown in Figure 9. More importantly, to

determine the linear model for each mask, only one covariance matrix

is required and can contain as many or as few terms as desired. The

process of collecting statistics for one matrix is not beyond the

complexity that we would want to undertake for the small number of

times required by this process. Naturally, any other markov process

may be substituted for the one in this linear model. As before, only

the measurements required to estimate the parameters corresponding to

each mask need to be taken. This number depends on the spacing of the

pixels in the first mask, which should be a power of two. Other

odd-shaped kernels and kernels whose spacing is not a power of two

could be designed to form space-filling sets. Most would require more

models to be estimated and would provide little additional

information.

Texture simulations using this method are shown in Figures 10-15.

Only a slight improvement is seen in some of the texture simulations

over the synthesis done by the earlier single linear model. Most of $
these textures are apparently well simulated by a carefully chosen

model and the results are not critically dependent on the coarseness

of the textures. More study remains to be done with textures of

various magnifications to determine the types of textures where this

skip-generate method provides improvement.

Multiple Linear Model Method

When generating textures using the general linear model described

by Eq. (1) and the generating kernel in Figure 1 the same model is

used regardless of the values of the pixels V1 ,... ,VN. By developing

more than one linear model and allowing the choice of the model at

each pixel generation step in the synthesis process to be dependent on

some functional value of Vl,...,VN, F(VI,..., VN) a new synthesis model

is formed. To illustrate this concept consider the data in Figure

16a. If we were to fit one linear model to the data it would look

65

rd

(a) (b)

Figure 10. Bark.

f4

666

(a) (b)

Figure 13. Leather.

(a) (b)

Figure 14. Sand.

(a)(b

Figure 15. Raffia.

67

like the single linear line running through the data. This linear

model could then be used to predict V 2 based on the value of V 1 in the

typical linear regression way. But if we allow the choice of our

linear model to be dependent on the value of V 1 then for an incoming

value of V 1 we choose a model whose domain includes V I. For 6 linear

models, the straight lines are shown in Figure 16b. The fit to the

data using multiple linear models will always be as good as or better

than that of the single linear model. That is, the mean square error

will generally be reduced using multiple models.

Using multiple linear models for texture synthesis we would
generate pixel VN+1 based on pixels V V,...,VN in the following way.

First, we compute a function, F, of the VI,...,V N pixels which allows

us to choose the proper linear model. Then using this model with the

values V1 ,...,V N we predict V N+ and add noise. This process is

diagramed in Figure 17.

Ideally, the function F should be chosen to minimize the total

mean square error resulting from fitting the limited number of models

to the sample data. This is very difficult to do in practice however

as for N larger than 3 we are fitting multiple hyperplanes to data in

an N+l dimensional space.

One texture synthesis of sand was done using the multiple linear

model (see Figure 18). In this case eight models were used and the

model number was chosen by examining the pixel immediately to the left

of the pixel being generated. The range of this pixel, 0 to 255, was

divided into 8 equal subranges and the model was chosen according to

the subrange into which the value fell. Only a slight improvement

over the single linear model synthesis is seen.

Another method of using multiple markov models is to generate an

image of fields defining the model number to be used in a second pass.

Such an approach would be useful in simulating textures which have

multiple sub-textures within them. A simple analytical example may be

68

V2 A V2

Figure 16a. Single Linear Model. Figure 16b. Multiple Linear Model.

Noise

viol~~~V .. 1vNMoe

Fl Nub r Mo e
l

Figure 17. Diagram of Multiple Linear Model.

69

I shown in Figure 19. Real world examples might include such things as

a brick wall where the texture of the bricks is different than the

texture of the concrete separating them. It was felt that this type

of approach might be useful in the simulation of bark which has a

strong macro structure. A method to separate this texture into two

fields which would later define the model to be used was designed.

This result (Figure 20) was obtained by successively passing smart

median filters of varying sizes over a binary image (which was

obtained by thresholding an original continuous grey-level image) (see

Figure 3a). The smart median filters replace the center pixel of a

window with the median only if certain conditions are met. In the

binary case, the center pixel of a square window is replaced if the

percentage of black or white pixels is above a specified threshold.

The threshold and window size vary in the successive passes over the

image.

In our actual simulation, once this field image is obtained a

method must be developed to simulate this field texture and this field

texture will then in turn be used to choose the model numbers in the

generation of final synthesis. Generating textures with only a few

grey levels can be done using more complete markov statistics, perhaps

n-grams, but the large size of the fields may require that a method

such as the skip-generate method be used. This kind of work has not

been done yet but is planned in the future.

Generating Non-Homogeneous Textures

Previous to simulation attempts, most textures in our work are

preprocessed by statistical differencing (see (4] for details). This

processing helps eliminate non-homogeneities in mean which are

primarily due to lighting effects. The process of statistical

differencing which removes these non-homogeneities can be reversed to

induce them back into a synthesized texture.

70

.~ I

Figure 18. Multiple Linear Figure 19. Sub-textures.
Model Simulated Sand.

®r.,

Figure 20. Two Bark Fields. Figure 21. Local Moment Modified
Cloth.

71

Statistical differencing is defined by

Glj k) [F(j k)-F(i,k)I]Ao(j~k)+Od +[aMd+(l-a)f(J'k)] (3)

where m and o represent desired mean and standard deviation. F is

the input pixel at location (j,k) and G is the output pixel in the

statistical differenced image. F(j,k) and o(j,k) are usually

estimated from the input image over a window containing pixel (j,k).

The inverse operation of statistical differencing can be called

local moment modification. Solving for F in terms of G we find the

formula for local moment modification as

Aa(jk)+Od f(j k)Acd -M+(1-a)F(jk)]l
F(j,k) = d G(j,k) + AIAo(jk)+O d L (4)

By generating an image F(j,k) and o (j,k) and defining A, a, md and od ,

using Eq. (4) we can induce non-homogeneities into our simulated

texture.

One such synthesis where F(j,k) was assumed to be ramp-like and

o(j,k) was a constant is shown in Figure 21. Other more complex and

more random F(j,k) and a (j,k) images could be used to create different

effects.

Segmentation Using Covariance

In [2] details concerning the estimation of a covariance matrix

and linear model determination from a sample texture are given. This

covariance and the linear model itself may be used to identify and

segment textures. A little-known method for testing the equality of t

covariance matrices given assumptions of normality is derived using

72

the standard maximum likelihood ratio approach in [5). The resulting

test for t=2 covariance matrices is given by

(5)
2 3026 mM 2 (22 . 0 6 m X p (p+l)/2

where

M = 1n+n 2- 2)lOgl1S-(nI-l)lOgl01-(n 2-1) 010S21'

S1 and S2 are the covariance matrices for each group,

S = [(nI- 1)Sl+(n2-1)S2]/(n1+n2-2),

Mn-1)(1 +n1 1] [(2p 2+3p-l)/6(p+l)],(l-1(n211(n 1+n 2- 2)

and p is the size of the covariance matrices being tested. Here n

and n2 are the sample sizes used to estimate S1 and S 2 . The

derivation of Eq. (5) is very complex and will not be detailed in this

paper. For fixed sample sizes m ic fixed so the primary distance

measure is M. This value approaches 0 when the matrices are equal and

becomes large the more they differ.

The composite texture shown in Figure 22 was segmented using this

approach. A covariance matrix was measured over a 48x48 pixel window

and the 16x16 window in the center of it was compared to the known

covariance for sand, the center texture in the composite. It should

be recalled that sand is not well-described by its covariance matrix

as the synthesis of sand using a linear model was poor. The

covariance matrix was 16x16 and described the relationships of the

pixels in the pattern shown in Figure 24. Statistical measurements

taken over a maximum pixel separation of 6 were used to produce a

distance measure. A scaled version of the output of the distance

measure M is shown in Figure 23. As was expected, the sand region is

picked out correctly.

73 4

rq

it~

! #

Figure 22. Composite Texture. Figure 23. Segmented Composite.

Figure 24. Covariance Matrix Kernel.

74

There is no doubt that better methods of segmenting and

identifying textures exist. The assumptions of normality and

independent samples on which this test for equality of matrices

depends are clearly violated. This may account for the poor

classification results. Better results will be obtained when going to

larger matrices perhaps but the computational complexity likewise

increases drastically.

Conclusion

New models for texture synthesis were described in this paper

along with results. It is felt that many will be useful in the future

to do texture simulations. A texture identification and segmentation

method was presented with preliminary results.

References

[1]. D.D. Garber, "Models for Texture Analysis and Synthesis," USCIPI

Report 910, 1979.

[2]. D.D. Garber, "Application of the General Linear Model to Binary

Texture Synthesis," USCIPI Report 960, 1980.

(3]. D.D. Garber and A.A. Sawchuk, "Higher-Order Texture Synthesis

Models and Residual Examination," USCIPI Report 960, 1980.

(4]. W.K. Pratt, "Digital Image Processing," Wiley, 1978.

(5]. M. Kendall and A. Stuart, "Advanced Theory of Statibtics,"

Griffin, 1976.

75

2.6 Runway Detection in Aerial Images of Airports

K.R. Babu

Introduction

In this report, the problem of combining collinear antiparallels

[1] in order to detect elongated objects, such as roads and runways,

in an aerial image is considered. The problem presents itself when an

aerial image is processed by a general linear feature extraction

program such as [1]: the program breaks the straight boundaries into

several disjoint lines.

An image of an airport area is used as an example to illustrate

the algorithm's effectiveness. Fig. l(d) shows the results obtained

by processing the antiparallel data of Fig. l(c) with the algorithm to

be presented. The lines represent the central axes of the runways.

Important Considerations

It is obvious from the nature of the problem, that we have to

produce a program that will compute, or group together, collinear

antiparallels in their correct spatial order. We now present three

different solutions towards this end; each of them differs from the

others in the way in which the antiparallels are treated. This, in

turn, affects the quality of the solution which can be judged on the

following three criteria:

1. The time complexity of the algorithm. (Ideally, the entire

algorithm should be analyzed; however, it is not always easy to

do so analytically; thus, a significant portion of the algorithm,

viz., only tho number of antiparallel pairs considered for

collinearity evaluation, is considered in this presentation).

76

2. Extraneous antiparallels that do not represent elongated objects.

Certain antiparallels have to be discarded because both of the

line segments of such antiparallels do not have collinear

continuity. In fig. 2, the line segment A does not have a

collinear counterpart. In most such situations, the line

represents an irrelevant detail surrounding an elongated object

being sought; thus, in fig. 2, antiparallel AB can be discarded

from any further consideration. This problem of selecting or

discarding certain antiparallels can be called the antiparallel

selection problem (APSP).

3. Computation of superfluous collinear antiparallel pairs. For

example, in fig. 3, the following set of collinear antiparallels

would be computed if all antiparallel pairs are compared:

[(1,2), (1,3), (1,4), (2,3), (2,4), (3,4) 1.

What is sufficient for characterizing the entire elongated object

is, however, 's only

[(1,2) ,(2,3),(3,4) }.

Thus, additional processing to remove this superfluity is

required.

The solutions assume that the im-ge has n anciparallels.

An important aspect of a program which tries to locate collinear

lines in an image is a procedure which returns a predicate indicating

whether two given lines are (approximately collinear). while many

variations are clearly possible, the following is a SAIL-like [2]

description of what has been used to produce the results of this

report:

78

AJ

AI

Bi

(a) (b)

Figure 2. The antiparallel selection problem (APSP): in
both the figures, the line segment, marked A,
does not form part of the runway (Thus,
antiparallel AB has to be discarded).

79

2

4I

3

14

Ie

Figure 3. A hypothetical elongated object in terms of its
linear features. Dotted lines represent axes of
ant iparallels.

80

define colltol "

" a suitable integer for collinearity tolerance"

simple boolean procedure collinear(integer dl, d2);

begin "collinear"

" dl and d2 are the angles of vectors being tested for

collinearity. The vector represented by d2 follows that

represented by dl.

boolean ok; integer d;

ok := d2 lies between dl+colltol and dl-colltol;

if ok then

begin

d := angle made by the vector joining the tail of 1

to the head of 2; " angle in 0..359

ok := d lies between dl+colltol and dl-colltol AND

d lies between dl+colltol and dl-colltol;

end;

return(ok);

end "collinear"

Solution #1

A straightforward algorithm is one where pairwise comparison, for

collinearity, of all the antiparallels is performed. This process

forms several collinear antiparallel pairs; some more processing is

required to group the (collinear) antiparallels representing a single

elongated object. The characteristics of this algorithm are -

1. Complexity of comparisons is 0(n2).

2. APSP can be solved only by conducting a search among collinear

antiparallel pairs (cf. Solution #3).

81

3. A considerable number of superfluous collinear antiparallel pairs

is computed only to be discarded later.

Solution #2

Instead of comparing all antiparallel pairs for possible

collinearity, it is possible to sort the antiparallels into buckets

representing their angular orientation. Then, antiparallels in

neighboring buckets only need be considered for the collinearity

comparison. The characteristics of this algorithm are -

1. The complexity here is not reduced, compared to that in solution

#1. If we assume uniform distribution of antiparallels into

buckets, the number of antiparallels in each bucket is

proportional to n, and since collinears for n antiparallels have2
to be computed, the complexity of comparisons is O(n), possibly

with a reduced constant.

2. Same as in solution #1.

3. Same as in solution #I.

Solution #3

Most of the inefficiency in the above two solutions is due to the

consideration, for collinearity checking, of antiparallel pairs wn":h

are not proximate; thus, we are led, in this solution, to exploring an

algorithm which will enable the program to consider proximate

antiparallels only.

Such a consideration is easily achieved by a point representation

of the antiparallels on an image grid (Fig. 4). Each antiparallel is

represented by two point vectors, each positioned at one of the two

endpoints and pointing outward (of the enclosed rectangle of the

82

_ 71

V) 1w
0

>o

0

) -4

4.o (
a

-- 41

14 ~0

L,) (n

83

all I..... nll
":' - 2 : l:i II : ... :"-: Zn.

d

antiparallel) and parallel to the antiparallel. (In some situations,

two endpoints may have the same image coordinates; in that case,

relocating one of them a pixel or two away will be sufficient to

preserve their identity while, at the same time, not significantly

affect the relative positioning of the antiparallels).

The essence of the algorithm is an operation which scans each

potential neighborhood for compatible point vectors. This

compatibility of point vectors captures collinear antiparallels and is

defined by -

1. the point vectors representing the antiparallels are

anticollinear, i.e., the angles differ by 180 + a, a tolerance,

and, the point vectors (Fig. 4), and

2. the component segments of the antiparallels form two collinear

pairs. Each application of the operator will result in at most

one antiparallel pair.

This operation over the entire image produces a list of

non-redundant collinear antiparallel pairs. These pairs are then

examined to produce lists of pairs such that if the pairs (al,bl),

(a2 ,b2),..., (an,bn) are in the list, then bimai l , i=2,...,n-l. Each

list, then, represents an elongated object or, equivalently, a

collection of collinear antiparallels.

The characteristics of this algorithm are -

1. Since the operation scans only around a point vector

(representing an antiparallel) , and since the maximum number of

point vectors that can come under the purview of the scan area is

a constant (determined by the area covered by the operation , the

number of collinearity comparisons is 0(n).

2. Since for each point vector, only one compatible point vector can

84

..

exist, the extraneous antiparallels are never computed.

3. Because of proximity considerations inherent in the operation, no

superfluous collinear antiparallel pairs are computed.

References

[i]. R. Nevatia and K. Ramesh Babu, "Linear Feature Extraction and

Description," Computer Graphics and Image Processing, Vol. 13, No. 3,

June 1980, pp. 257-269.

(2]. J. F. Reiser, "SAIL," Computer Science Department, Report

STAN-CS-76-574, August 1976.

2.7 Shape Matching Using Hierarchical Gradient Relaxation Technique

B. Bhanu and O.D. Faugeras

Introduction

The problem of shape matching mainly consists of two parts (1].

1) One shape is recognized to be an approximate match to another

shape, and

2) A piece of a shape is recognized as an approximate match to a
part of a larger shape. This problem is also known as the "segment

matching" (2].

In this paper we address the "segment matching" problem of shape
matching using hierarchical gradient relaxation technique.

85

The class of shapes that we consider are represented by simple

closed curves (no holes) and are two dimensional in nature such as the

linear features in satellite images, borders on maps, outlines of

biological cells etc.

One of the earliest shape matching techniques is based on chain

code cross-correlation [3). However, the usefulness of this method as

a solution to the segment matching problem is very much limited by the

fact that cross-correlation is not rotation invariant, it is very

sensitive to local changes in the number of chain links and also quite

sensitive to small global changes in the shape. There exist a large

number of statistical pattern recognition techniques for shape

matching [4]. Unfortunately, these feature based approaches cannot be

used for segment matching problem because they suffer fro-m the fact

that the descriptors of a segment of a shape do not ordinarily bear

any simple relationship to the descriptors of the entire shape.

Another class of shape matching techniques are syntactic techniques

[5), but they have not been applied to the segment matching problem.

Davis [1,6] studies segment matching using discrete relaxation methods

which carry strong syntactic flavor. Davis and Rosenfeld [7,8] use

iterative methods for recognizing upright squares on a noisy

background and hierarchical relaxation for waveform parsing. However,

they do not define a hierarchical relaxation network and study its

usefulness and computational properties [1). Rutkowski [9,10]

considers the shape segmentation of closed boundary curves such as

aeroplane using relaxation methods. Kitchen [11,12] applies discrete

and fuzzy logic approaches of relaxation for matching relational

structures. In fact, relaxation methods have been applied to a wide

variety of problems in pattern recognition, scene analysis and

artificial intelligence. A good survey of these methods is given in

[13]. Rosenfeld, Hummel and Zucker [14] introduced the idea of

probabilistic relaxation and Faugeras and Berthod [15] reformulated

the probabilistic relaxation problem by explicitly minimizing a

criterion function. In this paper we follow this optimization

approach of relaxation, called the gradient relaxation method. This

86LLj

method has been applied to segmentation, semantic description of

aerial pictures, edge detection etc. (15,16,17]. We maximize a

criterion function using projection gradient method and solve the

shape matching problem in a hierarchical manner.

In this contribution we consider only two levels of hierarchy and

show that how the method can be generalized. Various ways of

computing the initial probabilities and compatibilities are described.

Interaction of the two levels of relaxation is explained and

strategies that lead to faster computation are introduced. Finally,

an example is discussed in detail.

Shape Matching Using Gradient Relaxation Technique

In this section we present a two stage hierarchical gradient

relaxation method (fig. 1) for matching the segments of a template

against the segments of an object. Let 0=(O0,l ...,OL-2) and

T-(TOTl ... TN-) be the polygonal path representation of the object

and the template respectively. The segments are the sides of the

polygon and conventionally a polygon will be traced in the clockwise

sense. In general L may be greater, equal or less than N.

In the following discussion template elements will be called as

units and object elements as classes. Since a unit may not correspond

to any of the object elements, there exists a (L-l) thclass, known as

the nil class arid denoted by OLl . So we have N units and L classes.

Relaxation is an iterative process for labeling a set of interrelated

units. In "probabilistic relaxation" discussed below, a set of

estimates of class assignment probabilities is initially associated

with each unit. At subsequent iterations, the probabilities are

adjusted in accordance with the support they receive from the class

probabilities of related units.

To each of the units Ti . we assign a probability denoted by pi(k)

to belong to class 0k . This is conveniently represented as a vector

87

0

4 J
, 44~0

-U 4 4 4

0 m

C -

rz N
41 0=

C .4 W

, -, 4 41

410
0 02(

0 -4 4.
03 .J *- C -4

0.t. 04.4(
00

-4"-

o03

0)

04-

0
-4 .- 4

gi=p i(0), Pi(1),...,Pi(L-2), Pi(L-l)]T. The set of all vectors

Pi(i=0,...,N-l) is called a probabilistic or stochastic labeling of

the set of units. Units are related to one another, set of units

related to T. is denoted by V.. The units that are related to T. are

T((i_l)) and T((i+l))., where the indices are taken as modulo N, the

number of units. (For the sake of notational simplicity, in the rest

of the paper we shall not use the modulo notation explicitly). At the

first stage of hierarchy Ti_1 and Ti+ 1 will be called as the left and

right neighbors of the unit T. . At the second stage of hierarchy

T i_ , Ti t and Ti+ 1 will be considered as an entity in itself. The

world model is specified by the compatibility function C, which in

general is defined only over a subset S1S (NxL)2 for the first stage

and S2 S (NxL)
3 for the second stage of hierarchy. At the first stage

of hierarchy C(Ti'Ok' T.'Oz) measures the adequacy of calling unit T.

as 0k and unit Ti as 0z where T. e Vi (=Ti_1 or T i+). Similarly at the

second stage of hierarchy C(T1 , Ok , Ti l' OZ ' Ti+l, OZ) measures the

adequacy of calling unit Ti as Ok , unit T 1 as 0 ana unit Ti+1 as- 1

For each of the units we also define a consistency vector

iqi(0), q.(l),...,qi(L-2), qi(L-l)]T that tells us what p. should

be given pj at the neighboring related units and the compatibility

function. For simplicity in the sequel we shall denote C(T i ,
0 k' Tit

0 z) as C(i,k,j,Z) and C(T i ,
0 k, Ti_1 , 0ZI T i+l, 02 2 as C(i, k, i I

As described in (15], we define

Qi (k)

qi(k) = Q- (i)
Qi(()

Z=0

whe re,

89

L-I

Qi (k) = C(i,k,j,k)p (£) (2)
jeV i £=0

at the first stage of hierarchy. Similarly for the second stage of

hierarchy we obtain,

L-I L-1
Qi(k) = E E C(i,ki I Z1,i 2,Z 2)P (iZ)pi (Z2) (3)

1i=0 12=0 2

with qi(k) defined by (1). The global criterion that measures the

consistency and ambiguity of the labeling over the set of units is

given by

N-i

c p,= pqi (4)
i=O

we carry out the maximization of (4) using the projection gradient

approach. This criterion has been successfully used in the

segmentation and semantic description of aerial images [16,17). The

labeling problem now becomes to find the local maximum of the

crite.ion c closest to the original labeling P(0) subject to the

constraint that pi's are probability vectors. This problem can be

efficiently solved using steepest descent techniques [15]. The

gradient of the criterion c is obtained as,

90

L- 1

3Ci
k = qi(k)+ C(j,Z,i,k).(pj(£.p)P .q) for k=O,1,...,L-l

-p(k) jEj3 =

L-1 (5)

where D= E Qj(£=)X=0

at the first stage of hierarchy. The first term in (5) corresponds to

the simple maximization of the product pi. qi in the global criterion

c, and the second term corresponds to the coupling between units

through the comnatibility function. Note that in general

C(j,z,i,k)#C(i,k,j,z) since it depends upon the manner in which the

compatibility is computed. More about this is explained under the

compatibility computation.

Similarly, at the second stage of hierarchy the gradient of the

criterion c is obtained as,

3C

=P(k qi(k)+D [. (k)-Di Pil'q l] + p [2 - (6
2 2 2 2 2

where,

L-1 L-1
Q(k) = C(ilZ1,i3 ,z3,i,k)p (21)p (z 3)

Q. (k) E

1 0 Z 3=03 '1i k p I Pi3 (.3

Qi2(k) c(i 2'Z2'i4FZ41 i,klp (Z2) € 4
22=0 Z4=0 2 4

91

Di L-1 L-1
. = E 2 cui 1 i i4 3 z ,3 i,k) pi (9-3

I[pi (xk I =20 i 3=03
D 1 L-1

1W 2 .i~ 2 4 .4'iki(Z4

D!2 il 4)

D 2 =0 j =

and
L-I

Di 2 E Qi 2

These notations are made clear in Fig. 2. Again it is to be noted

that compatibilities like C(i,2,1,i 3,2 31 i,K) need not be equal to

C(i,k,ii, zi, 3,z3), since it depends upon the manner of computation.

Now the iteration of p's is given by,
1

p 1) (k) = !i (k)+ p P i (.7

I 1 1 1 aPi (k)j (7)

for k=0,1,... ,L-1 and i=0,1,...,N-.

where,

L- 1

(n)1 C 1 K ac C (8)
1pjikT r K=k L T i TFk -)

Normally, (n) is kept constant for all units during each iteration

92

3

i2

54

Fig. 2. Explanation of the notations for (5).

6 -

5
2 1

5 3

N e

%%

85 2. "

4 6 3 =0 since
4sides (2,3) and

(4,5) are parallel

Fig. 3. Illustration of the angle between the two sides.

93

and is determined to have the largest possible value such that pi s at

the (n+l)th iteration still lie in the bounded convex region of LN

dimensional Euclidean space defined by 0 pi(k)-l and p (k)>0,
k!O

(n ii=O,...,N-l. However, to obtain the faster convergence rate P(n)-is

obtained as

Pin) = a- min[maxPi (k)(9

where a is a constant between 0 and 1 and can be used to control the

rate of convergence. Also

1-p (n) (k)

pn(k) (k , if C > 0
C1 10)

(n)(k)i C if C 1 < 0

A side effect of computing p. for every unit is that we may not

be following the gradient exactly. However, it can be expected that

we are approximately in the direction of the gradient and the

criterion (4) is still maximized. Although the criterion generally

increases but sometimes it decreases slightly because p(n) in (9) is

too large for some of the units and then it continually increases.

Details of the Shape Matching Algorithm

In this section we study details of the shape matching algorithm

whose block diagram is shown in fig. I.

Polygonal Approximation

Polygonal approximation for the template and object is found by

using the algorithm proposed by Rosenfeld and Johnston [18), wnich

detects the points of high curvature. The algorithm works as follows.

94

l1

Let R={(XiYi)In= be the sequence of points describing a closed curve
so that (XlY)(Xn, Yn). At every point of the sequence, smoothed

k-curvature is evaluated as,

where

a jk=(X.X ,Yik i- i+k' i- i+k

bik = (Xi-X ik,Yi-Yi.k)

Cik is the cosine of the angle between the vectors aik and Sik so that

-l<Cikil, and Cik=- I for a straight line and +1 for the sharpest angle
of 0 degrees. Thus, the local maxima of Cik or the local minima of
the angle will correspond to the points of maximum curvature, which

will serve as the vertices of the polygonal approximation. Although

this method has certain shortcomings (19], but it works well if the

largest k is smaller than the distances between successiv-e angles

along the curve. Normally smoothing factor k is taken about 1/5 or

1/10 of the perimeter.

Features Derived From Polygonal Approximation

Some of the features that can be derived from polygonal

approximation of the boundaries of an object are-

1) Length of a side.

2) Intervertices distance.

3) Slope of a side.

4) interior angle between the two sides, and
5) Angle between the two sides as shown in fig. 3. This angle

corresponding to a vertex is equal to the angle between the two sides,
where one side is obtained by joining this vertex and its neighboring

counter clockwise vertex and the other side is obtained by joining the

two clockwise neighboring vertices of this vertex. This angle is

95

named as exangle.

When scale invariant features are derived, slope, interior and

exangle features can be used. For rotation invariance length of a

side and intervertices distance can be used. For rotation as well as

scale invariance interior or exangle or a combination of angle and

length features can be used in the initial assignment of

probabilities.

Initial Assignment of Probabilities

The initial assignment of probabilities for a unit is obtained by

comparing its feature values with the feature values of all the object

segments. Depending upon the type of invariance desired, we may need

the weight and the strength of a particular feature. In general, the

quality of correspondence of a unit i to an object segment k is given

by,

N1
(TiO k) = n E 1 ftn1- f onll Wnn (11

In

where N1 is the total number of features,

ftn =n1 feature value for the template element,

f O=n feature value for the object element,On. 1

Wnl weight for the feature nI , and

Snl-strength associated with the feature n1 .

Note that for a perfect match M(T,O)=l and for a poor match M(T ,Ok i k
will be very small. Thus the initial probability is assigned as,

1Pi (k) =l M(Ti, Ok) k=O,1 L-2

These probabilities are normalized so that they sum to 1. If we use

96

only either scale invariance or rotation Invariance or both, we may

not need weight and strength factors since only one type of features

(NIl-) are involved. However, if we combine length and angles, then

we need the strength and weight to account for their importance and

the different range of values of features. Thus the initial

assignment of probabilities involve unary relations.

Computation of Compatibilities

The compatibility function determines the degree by which two or

three assignment of the units are compatible with each other. There

are at least 4 ways of computing the compatibilities at the first and

second stage of hierarchy.

First Method

At the first. stage, we want a transformation TR from unit T. to

label Ok' i.e., TR: TiP Ok . TR consists of scale, rotation and

translation in the X and Y directions. This transformation is applied

to the unit T. and the error between the transformed T. and 0 is

computed as,

Ni

M(TR(T),O1) = ift, n-f on wnlsn (12)
nl~

where ftn =nI feature value for the transformed unit, and the other

quantities are similar to those in (11).

Note that here the features may be slope and length of the side,

so we shall need the weight and strength for these features, if the

matching error is based on these features. However, it is possible to

avoid these parameters, if we use only the distance between the ends

of 0, and transformed Tj as the matching error between two segments.

As illustrated in fig. 4 in this case matching error

97

T A B TR (T.

D

C
K

Template Object

Fig. 4. Matching dis tance error AB + CD.

98

M(TR(T.),O)=A+CD. Now the compatibility

C(i,k,j,) = 1
1+M(TR(T .)'0OZ

The problem with this method of computing the compatibilities is that

the compatibilities are not symmetric i.e., C(i,k,j,Z)#C(j,Z,i,k). As

we have seen the computations of gradient requires C(j,t,i,k), so if

this method is used we will need some modification in our program.

Moreover, since we are using only one transformation, compatibilities

values will not be very accurate compared to the other three methods

described below.

At the second stage to compute C(i,k,il,%l,i 2,z 2) still we find

one transformation as described above and use it to compute the error

between the transformed iI and1 (Error i) and transformed i2 and Z
(Error 2). Then

C(i'k'ii'ii2'2) z= l+Error l+Error 2

Because of the problems of asymmetry and inaccuracy, this method is

not much used.

Second Method

Unlike the first method, here we find two transformations TRI and

TR2 such that

TRI: Ti - 0k

and,

TR2: T. - 0

Now the average rotation, average scale and average translation (in

the X and Y directions) of these two transformations is computed. The

transformation associated with these parameters called TV, is now

applied to unit i and unit j and the matching errors between the

99

transformed units and the elements Ok and 0 are computed as in the

first method and finally,

1
C(i,k,j,Z)=

l+Total Error

At the second stage instead of finding two transformation, we find

three transformations and take the average of these values. This

average transformation is then applied to units i, ill i2 and the

total error between the transformed units and object elements k, Zip

12 is computed to get C(i, k, il, z1 i2 ' 2) as in the first stage.

Third Method

This method is similar to the second method in that we compute

two transformations TRI and TR2. Now TRl is applied to T. givingJ
matching error M(TRI(T),O) and TR2 is applied to T. giving matching

error M(TR2(T),Q). Average of this error is taken and

C(i,k,j,2) 1 +Average Error

At the second stage, we will find three transformations and the

average error will be the average of six error terms and the

compatibility

' '12'2) l+Average Error

Fourth Method

In this me.hod we compute mathematically the best transformation

from units i and j such that the sum of the squares of the error

between the transformed units and the object elements is minimum.

Here we can use only distance for the computation of matching error

(unlike the first three methods where we could use a combination of

slope and length) so that the error criterion is linear and linear

least squares ideas can be applied. An example is given below. Let

100

the coordinates of segments i,j,k, and z be given by (XIY1), (X 2 ,Y 2),

(DX1IDY1), (DX2 ,DY 2) , (RI,SI), (R2,S2), (Ul,Vl) and (U2,V2)

respectively then

MX=b

where

EJ -V1 1 0 DX1

V1 U1 0 1 DY1

U2 -V2 1 0 1Cs DX2

M V2 U2 0 1 sin b DY2

RI -SI 1 0 X1

S1 RI 0 1 YO Y1

R2 -S2 1 0 X2

S2 R2 0 3. Y2

and k is a scaling factor, a is the rotation and X0 and Y0 are the

translations in the X and Y directions respectively. The above set of

equations is an overdetermined system. It can be transformed as

MTMX=MTb

and now it will be 4x4 system, which can be uniquely solved for k, e,

X0' Y0 " This computed transformation can then be applied to obtain

compatibilities similar to the second method.

At the second stage we will have M as 12x4 matrix and b a column

vector of size 12xl. It can be solved exactly as above to obtain the

compatibilities. This method requires more time for the computation

of compatibilities, than any of the other methods. Also note that the

second, third and fourth methods of compatibility computation lead to

101

symmetric compatibilities.

Initial Probability and Compatibility for the NIL Class

The assignment of initial probability and compatibility to the

nil class is very important, since for some of the units there may not

be any object element. Note that 0L- 1 is the nil class.

Assignment of Initial Probability to the Nil Class £i(nil)

There are at least three ways for the initial assignment of the

probability to the nil class.

1. All the classes are assumed to be equally likely, then

pi(nil) = Pi(0) = Pi(1)... = Pi(L-2) = l/L;

where L is the total number of classes. However, it is not a good

assignment since the results of relaxation scheme depends on the

initial assignment and it is better to use feature information for

classes (other than nil class) rather than using no information.

2. pi (nil) is assigned a small constant value, depending upon the a

priori information that we may have about the possible number of

matches. Normally, we have taken pi(nil) between 0.05 to 0.25. The

actual value is not critical, however, it affects the convergence of

probabilities, hence the number of iterations required to achieve the

desired result.

3. If the number of units is not very large, then pi(nil) can be

taken as

Pi(nil) = 1 - max pi(k), k =.0,1,... ,L-2
k

After the assignment of probability to the nil class in the above two

102

cases probabilities are again normalized so that they sum to 1 for L

classes.

Assignment of Compatibilities Involving Nil Class

At the first stage of hierarchy the compatibility is C(i,k,j,i).

Compatibility involving nil class is assigned as follows. (Note that

OL-I is the nil class).

C(i,k,j,nil) = pi(k)

C(i,nil,j,£)=small number usually between 0.05 and 0.25 where, 2.

varies over all classes.

At the second stage of hierarchy the compatibility is given by

C(i,k,i I, Zli 2, Z 2). Compatibilities involving nil classes are assigned

as follows.

C(i,k,ilnil,i2 ',2) = C(i,k,i 2 , £2)

C(i,k,il,Z 1 ,i2,nil) = C(i,k,ilzl)

C(i,k,il,nil,i2,nil) = Pi(k)

C(i,nil,iZI',i2,Z 2) = small no. usually between 0.05 and 0.25

where 2i and Z2 vary over all classes.

Strategies That Lead to Faster Computation

Following are some of the strategies that have been used to

obtain faster convergence of the probabilities.

1) We can threshold a probability value to zero if it is less than a

certain threshold such as 10- . Once one or more of the components of

103

Pi become zero, we don't compute the gradient and compatibility for

them and suitably take care of it in the computation of the projection

of the gradient.

2) We can threshold a probability vector pi as the unit vector if any

of the components of Pi. becomes greater than a certain threshold, say

75%.

3) Compute Qi(k), compatibility and gradient at the first and second

stage only for a limited number of most likely labels. Usually this

number has been taken to be 1 or 2.

All of these features have been incorporated in the program and

lead to a marked reduction in the computation time. In the next

section we present an example which illustrates the capabilities of

hierarchical gradient relaxation method.

An Example

Figs. 5 and 6 show a template and an object respectively. The

perimeter of the template consists of 21 points and that of the object

38 points. Various features of the template and object are shown in

these figures. VX and V correspond to the X and Y coordinates of the

vertices. Polygonal approximation is obtained with a smoothing factor

of 4. It is to be noted that the upper portion of the template is a

noisy version of the object so the polygonal approximation in the two

cases are different. This makes the matching problem little more

complicated than in (13 where Davis introduces the noise after the

polygonal approximation, so that the number of edges and vertices

remain the same.

Table I and 2 show the results for the two levels of hierarchy (8

first stage iterations followed by 8 second stage iterations) at

various iterations and table 3 shows the expected assignments for the

units of the template. Initial probabilities have been computed using

la4

1-X

6 - Y

2 x

3

4

Smoothing factor = 4

of vertices = 6

Perimeter of the template = 21

Features of the template

VxV Vertices Slope Length Interior angle Exanqle

21,22 1 30.96 5.83 65.0 11.30

26,25 2 315.00 2.82 104.0 87.27

28,23 3 303.69 3.60 169 0 56.30

30,20 4 191.30 5.09 67.0 11.30

25,19 5 135.00 1.41 124.0 45.00

24.20 6 146.30 3.60 191.0 75.96

Fig. 5. Template.

105

1 1

2 -x

9

-Y y
7 3

x

6

* 4

5

Smoothing factor = 4

of vertices = 10

Perimeter of the object = 38

Features of the object

VxV Y Vertices Slope Length Interior angle Exangle

22,24 1 36.86 5.00 71.0 11.30

26,47 2 315.00 5.65 98.0 18.43

30,43 3 18.43 6.32 243.0 0.00

36,45 4 315.00 4.24 117.0 37.87

39,42 5 236.30 7.21 101.0 14.03

35,36 6 149.03 5.83 93.0 78.69

30,39 7 135.00 1.41 166.0 75.96

29,40 8 225.00 1.41 270.0 0.00

28,39 9 135.00 4.24 90.0 78.69

25,42 10 146.30 3.60 191.0 81.86

Fig. 6. Object.

106

'-4 04

r,4 4 CN N -4 0A
01 -4

-4

0 In 4.4
.-f -4 0 In 1-4 N - 4 - 0

41) r- Z% q 14 N -4 4 -4
U 0 13 - 4 0

-4 *41 - N
41 0 n (n 14N'U - 4 01

0. r-4 -4 04C
o 4 0

to I:4 C, -4 (4 - 00
41 r-4 C N 44~ > 4 0 '0

U) -4 N r-4 4
0) Cl) (n -4 -414

MU -4 0
4i U H

.4 1-4

~ - 4
> 4j~

'U 0 4. 0
O~ 4.)-4

04 0 'U 0 4J

Ln-4 N~ r- -t a 0 0L
.0 5isc, r -

04 0. 0 -

En -0 4..) nN C*- 1-4 -4o) -4 "4 '.'
a C) 0 C 0 04

ul 41 4 1 -4 ~N r- -4 1-4

'~ 00
Q) '4 -4

o . ' ~ -4 C4 r- -4 -W'
4 4. -U44-

r4 *. 0 C' - CJ r -4
4- 0 4..)-

0J

0100
. >

ra E-4

(NJ f'n eI) .

107

w. C -4 CN CN m' m~

-4 -4

41 0 (, r-4 C1 0 0m
(a '-4 -4

(3 ,:4 0'* 14 CN <N 00 0 0D
4 41 (a

Q) -4 -4 -

-4 U2) u
r.) rn 3 a1) -4 '-4 (N r- -4 ON 0

0 >~
-4-
M 4.)41)

*4-i
Co z CO >1 co -4 <N r- 1. 0

It En X: 0 '

-40 1-4 1-4 r- <-4 N r- -1

*D -4 a)C.N r- -
41 *' 4-) -4 0- -

11 -4 4--4I
II~~~1 41 - -

o fl 0 3
o 0 -4 U), IT -4 (N r- -4 , 0W C J

-4 0i Z, 0'- - 4 I

0 -4
'UN < N -4 i 0 r- -4 -v 0

4-) 01
<N . 0 1-4 -4 -4 Lii r- -4 -

0 a) r.A
0 CL 0) 1. Li r. .4 lw

E-4.

-4 N 'I V ii .

108

Table 3. Expected assignments for the units of the template.

Unit Assigned class

11

2 2

3 2

4 9 or 11

5 9 or 10or 11

6 10

109

only tno angle between the two sides (i.e. interior angle) and

compatibilities have been obtained by finding the average error (third

method). In obtaining Table 1 we have considered only one most likely

name in computing compatibilities and gradient, whereas in Table 2,

all possible class names have been considered. Computation time for

Table 1 is about 1/20 of that for Table 2. About 70% of the total

computation time is spent in computing the gradient. Also since we

don't store the compatibility values while computing the consistency

vector, we compute them again when gradient is needed. Assignment in

both cases (Tables 1, 2) are very reasonable although we did not

converge to the same assignment. If we increase the number of

iterations for the first stage in Tables 1 and 2, then corresponding

to Table 1 at the 15th iteration of the first stage, the assignment of

the units is 1, 2, 7, 8, 9, 10 and corresponding to Table 2 it is 1,

2, 2, 8, 9, 10. This shows the need for the second stage which gives

a better labeling of units when it is followed by the first stage.

Also we have found that generally the sum of the iterations at the Ist

and 2nd stage is usually less than needed by the ist stage alone to

obtain approximate labeling of units. In obtaining these tables we

have not thresholded the upper values of the probabilities (the lower

values have been thresholded at 10-). However, if we assign a unit

vector to a unit when its probability for a particular class gets

higher than a threshold, say 60%, then the number of iterations at

both stages reduces.

Conclusion

We have shown how a hierarchical gradient relaxation method can

be successfully used for the shape matching of objects. In this study
although we have considered only two levels of hierarchy, yet the
algorithm easily generalizes to higher levels of hierarchy. With the

increase in levels of hierarchy, we are using more world knowledge, so

the complexity of the processing increases, but the reliability of the

assignment of units increases. First stage alone does not resolve all

the ambiguities of labeling even if the number of iterations is very

110

large. Second stage helps in resolving those ambiguous labelings.

Normally we have found that about L/2 number of iterations at the

first stage followed by an equal number of iterations at the second

stage produce reasonable matches when L < 20. Although the chain code

cross-correlations and feature based approaches are simpler and

computationally less costly, yet they are not as robust and flexible

as this method is. Also this method does not require that the number

of template elements be less than the number of object elements as it

is needed in (1].

References

[1]. L.S. Davis, "Shape Matching Using Relaxation Techniques," IEEE

Trans. Pattern Analysis and Machine Intelligence, Vol. PAMI-l, No. 1,

Jan. 1979, pp. 60-72.

(2]. H. Freeman, "On the encoding of arbitrary geometric

configurations," IRE Trans. Electron. Computers, Vol. EC-10, 1961,

pp. 260-268.

(3]. H. Freeman, "Computer Processing of line-drawing images,"

Computing Surveys, Vol. 6, No. 1, March 1974, pp. 57-97.

(4]. R.O. Duda and P.E. Hart, "Pattern Classification and Scene

Analysis," John Wiley & Sons Inc., 1973.

(5]. T. Pavlidis, "A Review of Algorithms for Shape Analysis,"

Computer Graphics and Image Processing, Vol. 7, 1978, pp. 243-258.

(6]. L.S. Davis, "Hierarchical Relaxation for Shape Analysis," Proc.

IEEE Comp. Soc. Conf. on Pattern Recognition and Image Processing,

1978, pp. 275-279.

(7]. L.S. Davis and A. Rosenfeld, "Application of Relaxation

Labeling, 2: Spring-loaded Template Matching," Proc. 3rd Int. Joint

ill

Conf. Pattern Recognition, pp. 591-597, 1976.

[8]. L.S. Davis and A. Rosenfeld, "Hierarchical Relaxation for

Waveform Parsing," in Computer Vision Systems, Edited by A.R. Hanson

and E.M. Riseman, Academic Press, 1978.

(9]. W.S. Rutkowski, S. Peleg and A. Rosenfeld, "Shape Segmentation

using Relaxation," TR-762, May 1979, Computer Science Center, Univ.

of Maryland.

(10]. W.S. Rutkowski, Shape Segmentation Using Relaxation, it,"

TR-793, July 1979, Computer Science Center, Univ. of Maryland.

(11]. L. Kitchen and A. Rosenfeld, "Discrete Relaxation for Matching

Relational Structures," IEEE Trans. Systems, Man and Cybernetics,

Vol. SMC-9, No. 12, Dec. 1979, pp. 869-874.

(12]. L. Kitchen, "Relaxation Applied to Matching Quantitative

Relational Structures," IEEE Trans. Systems, Man and Cybernetics,

Vol. SMC-10, No. 2, Feb. 1980, pp. 96-101.

(13]. L.S. Davis and A. Rosenfeld, "Cooperating Processes for Low

Level Vision: A Survey," Technical Report 123, Jan. 1980, Univ. of

Texas at Austin.

(14]. A. Rosenfeld, R. Hummel and S.W. Zucker, "Scene Labeling by

Relaxation Operations," IEEE Trans. Systems, Man and Cybernetics,

Vol. 6, 1976, pp. 420-433.

(15]. O.D. Faugeras and M. Berthod, "Improving Consistency and

Reducing Ambiguity in Stochastic Labeling: an Optimization Approach,"

to appear in IEEE Trans. Pattern Analysis and Machine Intelligence.

(16]. B. Bhanu and O.D. Faugeras, "Segmentation of Images Having

Unimodal Distributions," submitted to the IEEE Trans. Pattern

112

L1 -en .. .

Analysis and Machine Intelligence, July 1980.

[17]. O.D. Faugeras and K.E. Price, "Semantic Description of Aerial

Images Using Stochastic Labeling," Proc. Image Understanding

Workshop, Computer Vision Laboratory, Univ. of Maryland, April 1980,

pp. 89-94.

(18]. A. Rosenfeld and E. Johnston, "Angle Detection on Digital

Curves," IEEE Trans. Computers, Sept. 1973, pp. 875-878.

(19]. L.S. Davis, "Understanding Shape: Angles and Sides," IEEE

Trans. Computers, Vol. C-26, No. 3, March 1977, pp. 236-242.

2.8 Shape Description of Occluded Objects Using Coordinated

Hierarchical Gradient Relaxation Method

B. Bhanu and O.D. Faugeras

Introduction

Matching of occluded objects is one of the prime capabilities of

any shape analysis system. Particularly in the analysis of sequence

of images occlusion problem becomes of major importance in the task of

modeling a dynamic environment (1-3]. Aggarwal and Coworkers (4-6)

studied the problem of modeling the image of a partially occluded

object and use the derived model to track the object through partial

or even complete occlusion. These authors work on simulated binary

images, processing by systematically relaxing the constraints on

object contours. Aggarwal and Duda [4] in their study on tracking

clouds that partially occlude each other take the polygonal

approximation of the shape of objects. These polygons are assumed to

113

be rigid, however, holes in the polygons are allowed. The concept of

a true vertex and a false vertex is used to detect occluding parts.

Their matching approach is sequential and suboptimal. Chow and

Aggarwal (5] consider planar curvilinear objects having no holes.

They also assume that all the objects are known to the program before

any analysis is done. Their basic concept of matching is the same as

of Aggarwal and Duda (4]. They mention that their matching technique

can be extended by matching the boundary of the images, however,

approaches such as chain code cross-correlation etc. are not suitable

especially if we are dealing with real images [7). Martin and

Aggarwal (6] represent the shape of an object by a sequence of

straight lines which have been derived from the graph of total

subtended angle vs arc length, 4-s, function of the object. Their

line-fitting process is the technique of iteration end-point fit

(p. 338, 8] and their segment matching approach is heuristic and

cumbersome. They consider the tracking of individual boundary

segments which allows to decompose the contour of two overlapping

object images during the tracking process into boundary parts related

to the component objects. Yachida et al. [31 apply the ideas similar

to Chow and Aggarwal (5] to the natural images involving the movement

of fishes swimming in a vat. For occlusion problem, they consider the

boundary matching in a relatively simple fashion. Roach and Aggarwal

(9) consider the occlusion problem in a 3-D blocks world.

We view the occlusion problem, basically a segment matching

problem which involves matching the segments of two or more actual

objects with the apparent object, which is formed by the occlusion of

these objects. Of course, some segments of the actual objects may not

match with any of the segments of the apparent object. Also matching

algorithm should not assign the same segment of the apparent object to

the segments of different actual objects which are occluding. Once

the matching of actual objects with the apparent object has been done,

it will be a relatively simple matter to track them and carry out the

motion analysis (15]. The segment matching algorithm that we use is

based on the hierarchical gradient relaxation method [10]. It is an

114

iterative algorithm based on optimization approach for labeling a set

of interrelated units. In order to use this algorithm for the shape
description of occluded objects, we modify this algorithm using a

penalty function approach so that the same segment of the apparent

object is not assigned to the segments of different actual objects.

The class of shapes that we consider are represented by simple

closed curves (no holes) and are two dimensional in nature. These

shapes will be approximated by polygons. Their vertices being the

points of high curvature [11]. We allow objects to change in shape,

but such changes should not be drastic otherwise no matching algorithm

can work. Unlike the previous studies as mentioned above we also

allow a change in scale so the objects in general may move, rotate,

and their scale may change. If the objects are rigid, then matching

will be a relatively easy task for our algorithm. In this paper we

describe the algorithm and study the computational aspects associated
with the hierarchical gradient relaxation and penalty function

approach. Finally, the results are illustrated with the aid of an

example in which two actual objects occlude to form an apparent

object.

Problem Formulation

Consider a general case in which M (> 2) actual objects occlude

one another to form a single apparent object. in the following we

shall call the actual objects as templates and the apparent object as

object. Let a template X be represented by X=(T,T 2 ,...,TN), where N

is the number of segments in the polygonal path representation of the

template. Similarly, let O(O1,02, ...,OLl) be the polygonal path
representation for the object. Object has L-1 segments.

Conventionally, a polygon will be traced in the clockwise sense,

i.e. keep the interior to the right. We want to match the segments of
the templates against the segments of the object such that the

following two conditions are satisfied.

115

1) Any segment of two different templates should not be assigned to

the same segment of the apparent object.

2) One or more segments of the templates which do not correspond to

any of the segments of the apparent object should be assigned to the

nil class, i.e., no match class.

We shall call the object segments as classes, and the template

segments as units. Let the nil class be denoted by 0L To each of

the units T. , we assign a probability denoted by pi (k) to belong to

class 0 This is conveniently represented as a vector
pi[pi(l),.... iL)]. The set of all vectors pi (i=l,...,N) is called
a probabilistic or stochastic labeling of the set of units. Units are

related to one another, set of units related to Ti is denoted by V.

The units that are related to Ti are Ti_ 1 and Ti+ 1 1 where the indices

are taken as modulo N. At the first stage of hierarchy T i 1 and Ti+ 1
will be called as the left and right neighbors of the unit T. At the
second stage of hierarchy Ti-1 Ti t and T i+ will be considered as an

entity in itself. The world model is specified by the compatibility

functions C, which in general is defined only over a subset2 3
S1 _ (NxL) for the first stage and S2 c (NxL) for the second stage
of hierarchy. At the first stage of hierarchy C(Ti, Oki Tit 0)

measures the adequacy of calling unit Ti as 0. and unit T. as 0z where

T. E Vi (=Ti I or T i+ 1). Similarly at the second stage of hierarchy

C(T i , 0 k ' T i I , 1', Ti+ 1, 0,) measures the adequacy of calling unit
T as 0k, unit Ti, as C and unit Ti 1 as 0 For each of the

2_'[1i z I , .i 2]T
units we also define a consistency vector qi=[q*(I), q.(2), q.(L)

that tells us what 6i should be given p at the neighboring related
units and the compatibility function. For simplicity in the sequel we

shall denote C(Ti,o k, T , 0) as C(i,k,j,Z) and C(T , 0k, T , 0

T 0) as C(i, k, i1,
2.I' 2 2).

As described in [10), we define

116

Qi (k)

Z Q (Z)
qi~k j' '= L1I

where,

L
i(k) = Z (~ i,k,j,2jpj(Z) (2)

jEV i Z=1

at the first stage of hierarchy. Similarly for the second stage of

hierarchy we obtain,

L L

Qi(k) = C 1(i,k,ilzi 2 z2) (Z1)p (2) (3)9- 2= 1 1 il P 2

with qi(k) defined by (1).

The global criterion that measures the consistency and ambiguity

of the labeling over the set of units of template X is given by

N
C i(4)

let v be the vector of RP=RLx...xRL (P=NL) equal to (PI' P2' ''N

Then (4) can be written as

117

IN

C i (5)i= (v

where

Now the total criterion of consistency and ambiguity for all the

templates will be given by,

M Nm
F 1v '--'M) E E Ji(vm)()

m=I i=l

where N is the number of segments and v is the P (=N L) dimensional
m m m M

probability vector associated with the mth template Xm .

The condition that any segment of two different templates should

not be assigned to the same segment of the object can be written as,

M MG~ v4 (7)

SIrv 2 ... jil

where { is obtained from with the elements corresponding to the

nil class set equal to zero for all the units of the template X and

g(si,sj) is the inner product of every vector pi of !i with every

vector pj of sj. What this condition essentially means is that if a

unit i of a template Xm belongs to the class 0 (where 2.#L), then sum

of the inner product of the probability vector of this unit pim with

the probability vectors of all the units of all the templates should

be zero. The nil class components have been excluded in obtaining s,

from v,, because one or more segments of different templates may

118

belong to the nil class. Let us consider an example, when there are

two templates, i.e., M-2. Also let the number of segments in template

X, and X2 be 3 and 4 respectively, then

G(l, 2) g(l,2 = 0 (8)

3 4

(P1 1+P2 1 P31) (p 1 2 +p 2 P2 P32(9)

P31. (P1 2 +P2 2+ P 32+P4 2)

where

im P [i (I) 'Pim(2) ,..., p i m(L - 1) ,0]
im. im, im, im

Now the segment matching problem can be stated as follows.

Problem Statement (A)

Given an initial labelings v 1 10 . for the set of M

templates to belong to various segments of the object, find the

labeling u 2, U 2 "' uM that correspond to the local maxima of
i .T~(0) -(0) -(0)suecto=h
criterion (6) which is closest to v1 , V2 ,...,v M subject to -the

following constraints.

(a) If E =(plmP2m,...,PNm) then gZm is a probability vector for

Z=l,2,...,N and m-i,2,...,M. For a particular unit y of the template

Xmt this means that the sum of the components of the vector pym be

119

119

equal to unity and that each component be greater or equal or zero,

i.e., if

P yr= (pym (1),Py (2),...,p ym(L)]T

then

L Pyr(MZ=1

and

Pym () > 0 for Z1, .. ,L

(b) G(,2, ... ,v M) as defined by (7) be equal to zero.

Note that the criterion (6) is nonlinear. Constraint (a)

involves linear equality and nonnegativity restriction and constraint

(b) is nonlinear. In order to solve this optimization problem we use

the penalty function concept (12-14] and modify the hierarchical shape

matching gradient relaxation technique [10].

Coordinated Hierarchical Relaxation Technique Based On Projection

Gradient Method and Penalty Function Approach

In order to solve the above problem using the penalty function

approach, we define the penalized objective function [12-14] as,

M M

i=l j=i+l j

where Pij is a penalty function and {dij} are penalty constants, also

referred as the coordination factors. Since the constraint (b) given

by (7) is an equality constraint, the penalty function is taken as the

120

simple quadratic loss function given by

ij (a) -a 2 (11)

Now the problem described in the earlier section becomes

equivalent to that of maximizing (10) subject to the constraint (a).

It can be solved using the gradient projection method applied to the

linear constraints. We have used this method in the hierarchical

shape matching algorithm described in (10]. We modify this algorithm

with respect to the penalized objective function. Maximization of

(10) subject to the constraint (a) is equivalent to maximizing

maX F(,)+s(V1 .. .v
v1
max m(V 2)+S(VJl,.... Ma)v 2 (12)

max F(v')+S(Vl....,v)
~ M l MvM

where S(1,...v M) corresponds to the 2nd term of (10). The algorithm

has been implemented in the serial fashion on the computer, first we

maximize with respect to vI' then with respect to v2 and so on. The

main modification of the algorithm (10] with respect to this problem

is the computation of the gradient. Earlier in (10) we maximized F(v)

with respect to V, but now the contribution to the gradient also comes

from the second term in (12), for example,

new gradient with respect to vi = old gradient with respect to v,

+-v (Sv

As an example let M=2, then the problem becomes to maximize

- i)2
c(l, 2) = F(v ,1 2)-d(g(s ,g 2

121

subject to the constraints (a). dii is taken as d in the above

equation. In order to solve this we consider

max F(v)-d[g(S, S2) 2

v 1

v- H 2
max F(2)-d[g(SI, S]
v 2

and use the method described in (10] with the modification for the

gradient term. Similarly, when M-3, we solve the following,

let A = d 2 g(sl1 2)] 2 +d 1 3 g(sl, 3)] 2+d 2 3 g(2
'* 3

)]2

max F (v)-A
vI

max 22V 2

max F(V)-A
V3 3

In general to solve (12) by maximizing with respect to v. the

algorithm can be stated as follows:

The Occlusion Algorithm

1. Pick an initial estimate of (01) 2 VM). This is the

initial assignment of probabilities to the units of the templates.

2. Pick the penalty constant {dij I so that it provides a suitable

balance between the associated first and second terms of (12).
-(n+l)

3. Determine the maximum v m (m=l,2,...,M) of the unconstrained

penalized objective function (12) subject to the constraints (a) by

using the present iterate vm and projection gradient method [01].

4. Pick new penalty constants [d j } in order to modify (or rebalance)

122

the magnitude of the penalty terms. The magnitude of the penalties

should be increased to force a closer approach to the boundary;

replace n+l by n and return to 3.

Under the assumption of continuity of function F (6) and

constraints (7) inherent in (10) the sequence of maxima {VmJ for

m=l,...,M generated by the above algorithm approaches a constrained

maxima of the problem defined in (A). The iteration is terminated

after the convergence is considered as adequate. Details of these

numerical strategies have been described in [10) and the rate of

convergence and the possible ill-conditioning near the boundary have

been discussed in [12-14]. However, in our case since we are seeking

only local maximas, these problems do not occur. In the next section

we present an example of the segment matching where two actual objects

occlude each other to form an apparent object. Block diagram of the

algorithm is shown in fig. 1.

Example

Figure 2 shows two actual objects which occlude each other to

form an apparent object shown in fig. 3. Note that there is a change

of scale for actual object X1 ; it may result because of segmentation

(different lighting conditions) or changes in the object itself even

if the camera position remains fixed. In figs. 2 and 3 dotted points

show the boundary of the objects and polygonal approximation has been

obtained with a smoothing factor of 4. Table I shows the parameters

used in the hierarchical gradient relaxation algorithm [10) and tables

2 and 3 show the results when only first stage is used. An inspection

of figs. 2 and 3 gives the most logical assignment (see Table 4) for

the units of X1 and X . Note that for X1 assignments are good, but

for X2 , the assignment of unit 1 is wrong. It should be 19. Tables 5

and 6 show the results when the first stage with six iterations is

followed by the second stage. Again, in this case assignments for XI

are valid, whereas for X assignment for unit 1 is wrong (Table 6).

Although this assignment is correct at the second, third iterations of

123

-4~ -4
41 41

(U M~

-41.

4 0 -4

04 .14 03

4.4

$ ~ 4-j

0 0 c (a 20

(a~~- -4 a. a(a cl

~ -4 4

.00

44~~ 04 -4LO4

0 c 0 00 a)

x, 0 4J X >,

w (13 0 CN

1-4 m 0

4.1 (1) 1-4-4 0

0.0

-4 $4 ~-40 a

00 00

1241

l 2

3
9

4

6

5

(a)

1

9 2

7

* 4

6

5

(b)

Figure 2. (a) First actual object X1 , perimeter = 34 points
(b) Second actual object X2, perimter = 35 points
In each of the figures the number of vertices = 9 and
dotted points show the boundary of objects. Polygonal
approximation is obtained with a smoothing factor of 4.

125

24

3

18

17
4

16 ,5

131

• 9

Figure 3. Apparent object formed as a result of occlusion of
actual objects X1 and X2 shown in fig. 2.
Perimeter = 67 pints. Number of vertices = 18.
Dotted points show the boundary of the object.
Polygonal approximation is obtained with a
smoothing factor of 4.

126

Table 1. Parameters used in the Hierarchical Relaxation Algorithm.

Smoothing factor in the Polygonal Approximation = 4

Weight of angle = 1

Weight of length 2

Strength of angle = strength of length = 1

Initial probability assignment - slope and length
of a segment is used

Nil class value for compatibilities and initial
probability = 0.15

Compatibility computation - Average distance error method

Reduced compatibility and gradient computation -

Number of likely labels at the first and second
stage = 1

Value of a in the iteration equation = 0.99

Upper threshold value for probabilities = 0.80

Lower threshold value for probabilities =
10- 4

127

-4 . 4 --4 1- 1-

4.j -4

(1) -W -4 (N ON~ Ln co

-W. -4 -4 -4 -4 4 1-4

(-4

0 .2L
$--4 -4 -4 - -4 4

-4.
0

0 -4

41 -4 -4

-1 (ar~ L 0 % ~ F- ~ '

-4 -

u -

(4-4 0l - C1 ~ 0 C.- a\ a%

4.4 0 (N '-) _, ON (n

C- 14

Ul2

"1' -- (4 ~ . . '0 ~
0 U4 -4 in -1

00

- 4

q1)2Q .40

U~ 128

V 1

41 V

0

r CN 1 4 N rnc
>4 0-4 -4 -4 1-4 1- r- '-4 CN

x0 a: 4. -4 CIT (0 r-4 N m 'I
0 - -4 -4 -1 r- -4 N

41-

N. 0r
1 -4 -(N3 . C -, N ')0

0 *.-4 C4 m ~ -T m 0
11J -- .4 14 4 -

040

1)-4 - -4 -4 -4 -

-~-4

C: 14- -4 -4 -4 -4

'J--4

ci4
U~ N ~ O' 0 ~ ~ * "

-4 -4 -4 -4 -4 -

0)129

Table 4. Expected assignments of the units of
actual objects X IandX2

Object X1 Object X 2

Unit Class Unit Class

1 1 1 19

2 2 2 8 or 19

3 3 3 9

4 4 4 10

5 5 or 19 5 11

6 15 or 19 6 12

7 16 7 13

8 17 8 14 or 19

9 18 9 19

130

00

0_ co -4 (N en " ON d'n \o r- 00 Nl
-4 -4 - -4 -4 -- f -4

--4

(N
r- -4 (N rn -V d mi 00 ' 0

4- -4 -4 1-4 1-4 1-4 0

0 0 -4 '.0 .4 (N m~ '.0 cli o) 10 - 0o -I
-4-4 4- -1 1 r4 -4 -4 0

d) 0.

4.1-4 -4 U) Iz -4 (N rn 110 a% a% 'D N- 0 -
(UW~r- 4 -4 - 4 0

X- 0
(a -4 L

41I el -4 C14 fn '.0 m~ ON 'o r- 'o 0D
0- 1U-4 -

.O 4 41I

- 1 l -4 - -4 --I co

(N 44'0 C ~ . .

ra0
1-4 -4 -4 - -4 4

(nU4

41~I (n to r-)N (1 .0 0 '. ' m. (N
124J-4 -1 -4 1-4 1-4 -4

0 -4

O4 C)4 -4 (') '0 0, 0'0 N '0

0 a)(N r', '.0 a% C0' o , '. N
-4 -4 -- -4 -4 "I

41

-24 V_ _ _ __ _ _ __ _ _

0
-4 -4

V N (LC) %-0 N- 0o 0)

131

14

4-4

0

ON

14 N ' . 0 -4 (-4 CI 1- r-4 (N

r4-4 r4-4 -.4 -4 -4 (N

00

1 1 4-4 -4 -.4 -1 4 -
4.?

-44

a) 0
(Z? .4? C0C~~C ~ 0 -4 C(N C" d'

(N(- V -4 -4 -4 r- r-4 -4 -4 L(

2-4 to
0 0

(Ncro CN ON 0 -4 (N (11 a C N

.0--4

U4 -4 uN 'Lo 4 N Cjn.C,

-4 -4 -44 -4 $
4-4
0

C.) 4.)

14 - 4 -4 -4 -4 1 0

4.J a(DC4N N m c 1

512 1.-4 -4 -4 -4 1. '

200

~~132

J d

the second stage, but it is labeled as 2 at iteration 6 because unit 9

is labeled as 19 at iterations 3 which causes a change in the labeling

of unit 1. One other fact that can be noted from careful examination

of tables 2-6 is tha, not only the number of iterations is little less

when the second stage is followed by the first stage, but also it

gives better labeling of units compared to the case when only first

stage is used.

Finally, Tables 7 and 8 show the result of the occlusion

algorithm. We have shown the values of the unconstrained objective

function (first term of (10)) and penalty function term (second term

of (10)) and the penalty constant at various iterations. Penalty

constant is chosen such that it provides a balance between these two

terms. For both objects X 1 and X 2 assignments are valid, however, the

convergence rate is little slower than in tables 5 and 6.

For the unit 1 of X the assignment does not change from 19, once2

it has been assigned (see table 6 and 8) and it has been found that

the probability of this assignments increases with the iterations.

Thus label 2 is uniquely assigned to the unit 2 of X . Also it is

interesting to note the assignment of unit 2 of X 2 in tables 6 and 8.

Conclusion

In this paper we have investigated the problem of shape

description of occluded objects based on segment matching. The

matching has been done using an earlier shape matching algorithm [10]

which has been modified to include the conditions for successful

segment matching when objects occlude. The algorithm based on a

hierarchical gradient projection method and penalty function concept

is described and an example has been presented to illustrate the

results. We hope that this framework provides a mathematical basis

for the solution of occlusion problem.

133

14J

0

00 u~l
-4 . N en -W 0) ON (0N ! CD

-4 - 4 -4 -4 - N m ~ - 00 C4

ca I

0 0t

) 41 - -4 (N r' 4 <n0 cr% C o '.0 1 .2 Nf 'o a) U"
r_ 1-4 -4 -4 -4 4 m~ - 00 .-

4- 4 .()
fa M 1

.1 4 0.

"-2 a%

(U -4 C14 m' 0. N m k0 r- o -

0) > - -4 1- 4 -4 00 -1 r

.- 1

o1 -4 14 - - -4 0 1-4 , w

"-4

(0* '.0o

(12 (N qT C,4 en 0. r- '.0 CD (N u2

((U 2

In in0 4)
.0 - 4 -

-4 Cc CU~ - N (n2 k.0 0'. m% '. ' '0 0(

-4 -4-

41 41
(U (12 0 1 0 .

(~~~4-4~a (N4 (". 0. ' ' . ~ . ~-
a1 fa -4

.14w 1 4
94 a -4 C(N ell '. Lfl %. '.0 co '

C -4- a- 41

0 a) 3

u C 00 . .4
.4.14 -W.0

"-4W u-

(12("i (". ~ L4 '0 r ~ '. -44 2134

-44

0 CO M ~ 07'O 0 -4 Nr ON CN N - L 0
.- -4 -4 -4 .4 -4 -4 -4 1-4 1- -4 N 0

o
m 00

4. % ON % 0 14 N ,n V a% LN co
- 4 r-4 -. 114 - 14 -4 -r-4 00 N-

0 (

0 -4
t4 -4 Qci 0- co N aN ~ L~

0 t T -44 -4 .-4 -4 -4 -4 -4 00 '- n-
"-4 C4 C:

44

44 a 0 0) 0 n4 ON Ici -4% N
o1(-4 -4 - 4 14 -4 0'. -4 c cN ,

0
44 -4'- * -

z* 0) C)

4.) -4 0'. 0' 0'. 0 -4 Nq m-' --I 0'. 0
44 r- 4 --4 r4 -4 v ~ . -4 r~ v

r4 0

oi di*q C n v n L o

o 1-4 N- N4 0'. 0'. 04 0 CD~.~-

-4 -4 -44 It'.

44 0j v4 N CD 0-4 N m I-z o'.1- N CN
2-4 r-9 4 -4 -4 -4 CD(m

w -4 4 CN4 -4C 4 n v f oc

44 ~ -4 -4 .-4 -4 1. 0 0- 0'. r"

.0 Nw 0

v0 ON C r % -4 N1 n co N

44t - 4 4- 00. '
0

-0 >44U

-4 4j-4 4 -4- 0

an a

0 N0 = >,-04 ~

44 U 4J40 4
-4U

0 0 'to
r0 ~ 4

135> a~

References

[1]. W.N. Martin and J.K. Aggarwal, "Dynamic Scene Analysis,"

Computer Graphics and Image Processing, Vol. 7, 1978, pp. 356-374.

(2]. H.H. Nagel, "Analysis Techniques for Image Sequences," Proc. 4th

Int. Joint Conf. on Pattern Recognition, Nov. 1978, pp. 186-211.

(3]. M. Yachida, M. Asada and S. Tsuji, "Automatic Motion Analysis

System of Moving Objects from the Records of Natural Processes," Proc.

4th Int. Joint Conf. on Pattern Recognition, Nov. 1978, pp. 726-730.

(4]. J.K. Aggarwal and R.O. Duda, "Computer Analysis of Moving

Polygonal Images," IEEE Trans. Computers, Vol. C-24, Oct. 1975,

pp. 966-976.

[5]. W.K. Chow and J.K. Aggarwal, "Computer Analysis of Planar

Curvilinear Moving Images," IEEE Trans. Computers, Vol. C-26,

Feb. 1977, pp. 179-185.

(6]. W.N. Martin and J.K. Aggarwal, "Computer Analysis of Dynamic

Scenes Containing Curvilinear Figures," Pattern Recognition, Vol. 11,

1979, pp. 169-178.

(7]. H. Freeman, "Computer Processing of Line Drawing Images,"

Computing Surveys, Vol. 6, No. 1, March 1979, pp. 57-97.

(8]. R.O. Duda and P.E. Hart, "Pattern Classification and Scene

Analysis," John Wiley and Sons, 1973.

[9]. J.W. Roach and J.K. Aggarwal, "Computer Tracking of Objects

Moving in Space," IEEE Trans. Pattern Analysis and Machine

Intelligence, Vol. 1, No. 2, April 1979, pp. 127-135.

[10]. B. Shanu and O.D. Faugeras, "Shape Matching Using Hierarchical

Gradient Relaxation Technique," Technical Report USCIPI 990,

136

Oct. 1980.

[11]. A. Rosenfeld and E. Johnston, "Angle Detection on Digital

Curves," IEEE Trans. Computers, Sept. 1973, pp. 875-878.

[12). C.N. Dorny, "A Vector Space Approach to Models and
Optimization," John Wiley and Sons, 1975.

(13]. D.G. Luenberger, "Introduction to Linear and Nonlinear

Programming," Addison-Wesley Publishing Co., 1973.

(14]. F.A. Lootsma, (ed.,), "Numerical Methods for Nonlinear

Optimization," Chapter 23, Academic Press, New York, 1972.

(15]. B. Bhanu, "Computation of Features in the Analysis of Images of
Moving Objects," Technical Report USCIPI 990, Oct. 1980.

2.9 Computation of Features in the Analysis of Images of

Moving Objects

B. Bhanu

Introduction

Normally the input for the human vision system is a complex scene

containing many objects with irregular shapes and the scene is
changing due to the relative motion between the observer and the

object. Different densities of receptors in the eye cause different

actions by parts of the retina. Peripheral vision processes detect

the motion and provide gross information about the scene. Detailed

fine analysis is done by the attentive processes, wherever it is

137

necessary [1]. Perception built over time, is the process of
detecting the invariants of an object and finding distinctive
differences. In other words, the perception of the scene is the
result of integrating several input frames. Similar to a human vision
system, a computer vision system capable of analyzing a sequence of
frames should be able to extract information not only from each frame

but from the sequence as much so that a description of the sequence
can be obtained. Also the amount and type of processing should vary
with the complexity at different places of the scene.

Movement is a form of change, and change is a significant

perceptual attribute of our world. The basis of perceived change in
human being lies entirely in the functioning of the 'nervous system.
Change is a property which involves a comparison between what the
object was and what the same object is now. Changes can be perceived

in the location of an object, its structure, size, shape, color etc.
(2]. Usually we can readily identify the nature of the perceived
change. Similarly, a machine vision system for analyzing a sequence
of images should detect significant changes in the features which
distinguish the object from other similar objects. Continuing our
work on the analysis of moving images (3], in this paper we describe a

set of features which can be used in the analysis of such images and

show the results on a test image.

Dynamic Image Understanding Model

The key problem in artificial intelligence is to automatically

discover good distinguishing feature representations for objects based
on general world knowledge. In order to address this problem and
carry out the motion and shape analysis of objects in an adaptive
manner we consider a new dynamic image understanding model reported

earlier [3]. Its simplified block diagram is shown in Fig. i. Model

achieves the symbols, features and segmentation control by distributed
feedback. Depending upon the matching of scene at a time with its
prediction model, we do simple or complicated processing for motion as

138

well as shape analysis. The prediction of later scenes should reduce

processing subsequently. The features computed in a controlled

fashion are used in a hierarchy of matching algorithms. Note that the

segmentation varies with the dynamics of the scene. Now let us

consider the meaning of the feedback conditions A, B, C, D, E shown in

Fig. 1.

1) Want to compute more features for matching or use a different

matching algorithm (A or B).

2) Want a better matching algorithm or a better segmentation (B or

C).

3) When the matching of a scene with its prediction model is

successful, then the prediction of the next scene will be used to

carry out the segmentation (E).

4) More symbols/features are computad, but it is concluded that the

incorporation of them in the matching algorithm will not lead to

successful matching, then we want to go for better segmentation (D).

Work along the above lines is presently under investigation and

will be reported in the future. In the next section we describe

various features which should be useful in the analysis of images of

moving objects.

Computation of Features

We want to use features for the recognition of objects and

comparison of sequence of images to determine changes. Some of these

features are similar to those used in image understanding by humans,

while others are not such as moments. We classify the features into

three categories:

1) Basic features such as area, perimeter, centroid, orientation etc.

139

4-1

0

•i. a
$4 = a)

.4.0 41

44)

(n0

Q))

.)

00
-4 0

414

4.)

I II140

Ud

2) Derived features are those which can be obtained from basic

features such as the ratio of area/perimeter
2

3) Contextual features are those which involve the relations with

other objects such as relative position, size, neighbors, etc.

While these features are important in their own right, their rate of

change should be useful in developing the prediction model. We are

concerned here with the monochrome images and no textural features are

used. However, if color and texture information is available, it

should help in the analysis rather than making it more complicated.
Results will be presented in the final section on a sequence of test

images shown in Fig. 2. This figure consists of eight images of size
256x128 pixels and they are generated using the system described in

(3].

Once the segmentation has been done it is assumed that the

boundary of the objects are represented by chain code since it is a

compact representation from storage view point [4]. However, to get
the chain code for a segmented object (binary picture) may cause some
problems because chain code requires tle unique successor and
predecessor of a boundary point. (A boundary in a digital plane is a
collection of points where each pont is connected to two of its
8-neighbors, except for edge points where "Forks" exist). In order to

overcome these problems we employ the following rules-

I. If all the 4-neighbors of a pixel are zero, then throw it away,

i.e., we remove the isolated points.

2. If any of the 4-neighbors of a pixel are zero, then it is
considered a boundary point (5, p. 339].

3. If any of the 4-neighbors of a boundary point obtained in step 2
are inside the boundary, then it will be the boundary point, otherwise

141

we throw it away (6, p. 62]. This smoothing step eliminates the area

of an object which is 2 pixels wide.

Even after the application of the above 3 rules we don't have

unique successor and predecessor for every boundary point.

Pathological cases do occur. In such cases we select one of the

successors and proceed as usual by creating a stack, if no successor

situation is encountered, then we start from the last situation where

there were more than 1 successors and proceed. We keep repeating it

until we get the chain code for the complete boundary of the object.

An object in the sequence is identified by the scene number and

the object number in the scene. Object will be described by its

starting point and chain code and it is noted whether the object is a

boundary object (i.e., touches the boundary of the frame) or its is

completely inside the frame. Note that from the chain code and

starting point, we can uniquely find the coordinates of the boundary

points, whenever necessary.

Computation of Basic and Derived Features

Size and Shape

The size of an object includes features such as width, length,

maximum limits of extent (maximum and minimum X- and Y- values), area

etc. For an object we define,

XMAX - Maximum X value

XMIN - Minimum X value

YMAX - Maximum Y value

YMIN - Minimum Y value

From the coordinates of the boundary XMAX, XMIN, YMAX, and YMIN can be

easily obtained. Also X and Y center of the enclosing rectangle can

be obtained as,

143

X Center of Rectangle - XMAX + XMIN
2

and

Y Center of Rectangle - YMAX + YMIN

2

Furthermore, width and length of the rectangle can be obtained as,

width = XMAX - XMIN

and

length = YMAX - YMIN

and

XMAX - XMIN
Aspect ratio = width/length

= XMAX - YMIN

The area of an object is just the number of points that it covers.

This is computed by counting the number of points inside the object.

Area is also needed in the computation of some other basic features

such as centroid, orientation etc.

Shape

There are almost limitless ways in which perceived shape may be

classified, for example, circularity, angularity, elongation,

symmetry, complexity and so on. However, we are concerned with those

features which can be easily computed. Commonly used features are
2perimeter, the ratio area/perimeter , orientation, moment of inertia,

length of the radius vector from centroid to the perimeter, a count of

the number of corners of the shape etc. Now we shall elaborate on

these features.

144

Perimeter: It is just the number of boundary points of an object. The

ratio Area/Perimeter 2 is a measure of compactness of the object. It

is a dimensionless quantity. It will be maximum for circles in a

continuous world.

Orientation: The aspect ratio as described above suffers from the fact

that it is dependent upon the orientation of the object. We would

like to obtain the rectangle which just encloses the shape in

arbitrary orientations such that the length of the rectangle is

parallel to the principal axis. Direction of the principal axis is

the direction of the major axis and the moment of inertia is minimum

along this axis. Let e be the angle between the principal axis and

the horizontal axis. Let X and Y be the centroid of the object, then

1 -f(x,y) 2 xf(x,y)

m x-2

x y

rol , (x-i) 2- f (x, y)
x y

where f(x,y) is the characteristic function of the object, which is 1

inside or on the object boundary and zero outside. Note that the

denominator in the equations for X,'? is the area. The orientation 8

is given by,

14S

2m
tan 28 = 211

m2 0-m0 2

It is to be noted that 0 has an ambiguity of T radians. Because 3f

this ambiguity sometimes it is useful to define the orientation

nearest the angle of maximum radius vector. Now

Major axis length of the orientation independent rectn'

max ((xl-X)cose+(y 1-Y)sine"9(xl ,Y 1)

+ max {(X-x 2)cos (Y-y 2)sin9-
(x2,y2

)

where (x,,yl) and (x2, 2y range over all the boundary C.2t3. -

axis which is equal to the width of the orient3:,n.:- -'

rectangle is obtained from (2) with a replaced by

The moment of inertia of f(x,y) about the line y=xtan- er:::

of f(x,y) is taken as origin) is given by

me = (ycose-xsine)2f(x,y)
x y ,3)

= Mr2 ,sin 2+m 2cos
2 8-2m sinecos ."

(3) gives the minimum moment of inertia. Maximum moment of inertia is

found from (3) when 0 is replaced by 9+1r/2. The ratio of minimum to

maximum moment of inertia is a measure of elongation.

Radius vectors: The length of the radius vector from centroid to the

points on the perimeter describes the shape of an object. Important

radius vector information includes the length of the maximum radius

146

vector and its orientation, length of the minimum radius vector and

its orientation and length of the average radius vector. The derived

features from these basic features include the angular difference

between the maximum and minimum length radius vector, and a number of

ratios of maximum, minimum and average length radius vectors.

Moments: Hu [71 has derived the seven moments which are invariant to

rotation, translation and scale. Although these moments don't carry

any physical intuition, but they are quite useful. For the sake of

zompleteness, they are given below,

Q1 = n20 +n 0 2

2 2
Q2 = (n20-n0 2) +4n11

Q3 (n3 0 -3n1 2) 2+(3n)21-n03)

2 _ 2Q5= (n 3 0 -3n 1 2) (n 3 0 +snl2) C n3 0 +n1 2) -3 n2 !+n 0 3)]

+(3n 2 1-n0 3) (n 2 1 +n 0 3) (3(n 3 0 +n 1 2) 2(n21+n03)

2_ 2Q6 = (n2 0 -n0 2) [(n 3 0 +n 1 2) -(n2 1 +n0 3))-4n 1 1 (n 3 0 +n 1 2) (n 2 1 +n 0 3)

2

Q7 = (3n 2 1 -n 0 3) (n 3 0 +n 1 2) [(n 3 0 +nl 2) -3 (n 2 ,1-n 0 3)21

+(3n 1 2 -n 3 0) Cn 2 1 +n 0 3) (3(n 3 0 n1 2)2(ni+03)21

where

p Y '
00

147

. . .

and

x y

It is to be noted that compared with the other basic features,

the computation of these moments is costlier.

Ratios of Discrete Fourier Transform (DFT) Coefficients as Shape

Features

Various researchers (6] have investigated the use of Fourier

transform itself or the features derived from the transform to obtain

the features which are invariant to rotation, translation and scale.

In this study we use some shape features derived by Granlund (8] in

continuous case. Because of the changes from frame to frame it is not 4
possible to use these features to obtain rotation (initial point does

not remain the same from scene to scene because object is moving and

moreover it is obtained after segmentation). We use 4 shape features,

which are representative of the form of the contour.

D22 -
a1

2

D12 a _-

a1

148

] d , ,, -- n r m i' lnI

d

3

D13 = a2a_ 2

a1

a5a_ 3

D44 = 2

a1

a i s in the above equations are Fourier coefficients. These features

are complex in general. We have computed these features using

Goertzel algorithm [9] since it is faster by a factor of 2 than FFT

and moreover it does not require that the transform be computed at all

the points. Here we need only 8 DFT coefficients. The boundary

points are put in a complex array and the signal is padded with zeros.
The transform size is taken to be 1024. We cannot take the perimeter

as the transform size since the perimeter of an object varies from

scene to scene either because the segmentation is not perfect or the

shape of the object changes.

Contextual Features

In this study we have used five contextual features. One of them

is principally a size feature. It is the area of an object relative
to other objects (relation is greater). The other 4 features are

neighbors of the object, relative position of an object in relation to
its neighbors, centroidal distance between an object and its neighbors

and the minimum distance between an object and its neighbors.

149

Neighbors

The neighbors of an object are found by finding all those objects

which are completely or partially within an area of twice the width

and length of the rectangle of this object when the rectangle is

placed about the centroid of this object. This method of finding

neighbors takes into consideration only the size of the object. A

better way would be to consider the size as well as the velocity of

the object in the determination of neighbors. Note that neighborhood

relation is not symmetric.

Relative Position

For all the objects which are neighbors of an object, we find the

relative position of these neighboring objects with the object.

Relative position is given by 4 relations, above, below, to the right

and to the left. An object RI is said to be above object R2, if

(Top(Rl) < Top(R2)) and

(Bottom(Rl) < Centroid X(R2)) and

(Right(Rl) MIN Right(R2)) > (Left(Rl) MAX Left(R2))

An object R1 is said to be below object R2, if

(Bottom(Rl) > Bottom(R2)) and

(Top(Rl) > Centroid X(R2)) and

((Right(RI) MIN Right(R2)) > (Left(RI) MAX Left(R2))

An object Ri is said to be to the left of object R2, if

(Left(Rl) < Left(R2)) and

(Right(Rl) < Centroid Y(R2)) and

((Top(Rl) MAX Top(R2)) > (Bottom(Rl) MIN Bottom(R2))

150

' A * - " I / . . . i/ l

Similarly, an object RI is said to be to the right of object R2, if

(Right(Rl) > Right(R2)) and

(Left(Rl) > Centroid Y(R2)) and

((Top(Rl) MAX Top(R2)) > (Bottom(Rl) MIN Bottom(R2))

Although the neighborhood relation is not symmetric, yet we have

taken the relative position relation as symmetric. For example (see

Table 2) although object 5 has no neighbor, yet it is said to be above

7 because object 7 has object 5 as its neighbor and object 7 is below

object 5. Also note that although an object may have a particular

neighbor, but there may not exist any relative position relation

between them.

Centroidal distance between an object and its neighbors - it is

the distance between the centroid of this object and its neighbors.

Minimum distance between an object and its neighbors - it is the

minimum distance between the boundary of this object and its neighbor.

In other words it will be the minimum distance travelled by one of

these objects when they will start touching each other.

An Example

For the test sequence shown in Fig. 2, computation of all the

features is shown in Table 1 and 2 which show the basic and derived

features for object I and contextual features for all the objects in

the first frame. These tables are self explanatory.

Conclusion

In this paper we have discussed the computation of various

features which should be useful in the analysis of image sequences.

151

Table 1. Basic and derived features for object 1
of frame 1 (see Fig. 2).

No. of elements in the chain code: 27
Starting coordinates: (16,79)
0000000075565"54445343431111

Basic Features

1. XMAX: 23
2. XMIN: 16
3. YMAX: 88
4. YMIN: 75
5. Perimeter: 27
6. Area: 72
7. X Centroid: 19
8. Y Centroid: 82
9. Orientation: 1.817 Rad.
10. Major axis: 13.33
11. Minor axis: 7.040
12. Max. Moment of Inertia: 766.7
13. Min. Moment of Inertia: 235.2
14. Max. Radius: 7.071
15. Min. Radius: 3.000
16. Avg. Radius: 4.444
17. Angle Max. Radius: 278.13 Degs.
18. Angle Min. Radius: 180.00 Degs.
19. Moment 1: 13.91
20. Moment 2: 54.50
21. Moment 3: 2.042
22. Moment 4: 2.945 $
23. Moment 5: 7.215
24. Moment 6: 17.95
25. Moment 7: -.33708
26. Mag D22: .9911
27. Phase D22: .0000
28. Mag D12: .9933
29. Phase D12: .000G
30. Mag D13: .9867
31. Phase D13: .0000
32. Mag D44: .9648
33. Phase D44: .0000

Derived Features

1. X Center of Rectangle: 20
2. Y Center of Rectangle: 82
3. Width of the Rectangle: 7
4. Length of the Rectangle: 13
5. Width/Length: .5384 2
6. Thinness,Area/Perimeter : .9876
7. Major axis/Minor axis: 1.894
8. Max. Moment of Inertia/Min. Moment of Inertia: 3.259
9. Max. Radius/Min. Radius: 2.357
10. Max. Radius/Avg. Radius: 1.590
11. Min. Radius/Avg. Radius: .6749
12. Angular difference (Max. and Min. Radius): 98.130 Degs.

152

,a- - -- -N - - -

ONCI NNNNe
O'i C1 o C o

0- U')"DN -4

4 -4 N £11 r- r-r -V

V) 4 ~I - -

. r)4 -4 -4 a 0

(3 = 1- -

a m - - -O to I-L

NN CNU v0

0 ~ (1) 0a)0 W o

-4 - -

Id 0

4 1J

0
C 0 ~ C'4 t4W N r 'Lf -4

00
CJ20 3 3 0 a0) I

oo > 0 > J 0 > 41 > i 3>. 0 -40 1- 0 4 4 0 41 0
-4 (1)0 - . 0

0

-4

0d -4-

0 .
CJ20 0

-4 0 0 -

Na

00 0

61 LM 0 -
Q4 *-

-4 - -4

- N
-4 N - -

Cd co a*, ~N

V - 153

The rate of change of feature values should be very helpful in

generating more accurate and .precise prediction model. The

computation of these features is conditional as shown in Fig. 1. The

work along these lines is presently under investigation and will be

reported in the future.

References

[1]. J.J. Gibson, "The Perception of the Visual World," Houghton

Mifflin, Boston, 1950.

£2]. K.E. Price, "Change Detection and Analysis in Multi-Spectral

images," Ph.D. Thesis, 1976, Dept. of Comput. Sci., Carnegie Mellon

University.

£3]. B. Bhanu and O.D. Faugeras, "Computer Analysis of Moving

Images," USCIPI Report 960, March 1980, pp. 116-128.

£4]. H. Freeman, "Computer Processing of Line Drawing Images,"

Computing Surveys, Vol. 6, No. 1, March 1974, pp. 57-97.

[5]. A. Rosenfeld and A.C. Kak, "Digital Picture Processing,"

Academic Press, New York, 1976.

£6]. T. Pavlidis, "Structural Pattern Recognition," Springer-Verlag,

1977.

(7]. M.K. Hu, "Visual Pattern Recognition by Moment Invariants," IEEE

Trans. Information Theory, Vol. IT-8, Feb. 1962, pp. 179-187.

(8]. G.H. Granlund, "Fourier Preprocessing for Hand Print Character

Recognition," IEEE Trans. Computers, Vol. C-21, Feb. 1972,

pp. 195-201.

(9]. G. Goertzel, "An Algorithm for the Evaluation of Finite

154

Trigonometric Series," Amer. Math. Monthly, Vol. 65, Jan. 1958,

pp. 34-35.

2.10 Region Descriptions Using Range Data

A. Huertas, S. Inokuchi and R. Nevatia

Introduction

Scene analysis problems including segmentation and shape analysis

are simplified when range data , i.e. the distances of observed points

of a scene from the viewer, is available. An edge based approach has

been described in (i] by which fairly complete region boundaries can

be detected in range pictures. Boundary segments can then be traced

in order to find closed regions and some region properties can be $
inferred by observing the orientation of the segments along a region.

Descriptions on how regions occlude other regions can also be

obtained.

In this report we describe a boundary tracing program which

traces region boundaries that have been detected using the method

described in 1i]. The region descriptions provided by the program

include a classification of the regions found as complete parts,

subparts, complete holes and spaces. Occlusion information is

obtained by examining the classification of the regions and the

available range data.

Region Descriptions

The region description process proceeds in two steps.

155

1111 000

a. Region boundary tracing

Finding boundaries of closed regions is relatively simple, if

complete boundary segments are found. By maintaining a list of the

segments with two locations for each segment, suitable segmerts can be

selected to start the trace of a region. Once a seament is selected

the boundary can be followed by selecting the appropriate sequence of
"next segments". Each of the two positions in the list are used to

mark a selected segment as "visited" according to the direction

followed.

The process proceeds in a counterclockwise manner. The "next

segment" function (NSF) selects among the set of segments with one end

point lying within a one pixel neighborhood of the end point of the

last traced segment (current segment), the one that has the smallest

angle measured clockwise at the end point of the current segment if

the segments intersect. Otherwise the angle is measured at the

intersection of the extension of the current segment with the segment

being considered for selection. Figure 1 shows several examples of

how the angles are measured. If the selected segment is located

within a certain distance of the frame of the picture, the frame is

followed in the right, up, left or down direction according to the

section of the frame encountered (bottom, right side, top or left side

respectively). The first segment encountered with one end point lying

within a certain distance of the frame is selected and the process

continues.

Four aspects need to be considered when selecting the next

segment in the tracing process.

i) Figure la shows that one pixel long segments might be skipped

if they are collinear with the current segment. Segment S 1 is the

current segment, S 2 is a one pixel long segment, and both S 2 and S 3

have an end point within one pixel of the end point of Sl . Since

156

e 2

S2 3

ee

22

(a) (b)

15 3

21< i' $3 is selected and S2 is skipped. The NSF knows if a segment

is skipped and marks it as visited to prevent its being selected again

when starting the trace of a new region. Figure lb shows that if a

one pixel long segment is not collinear with the current segment, the

direction of the trace might be reversed. S is the current segment,

S2 is a one pixel long segment with both ends lying within one pixel

from S I, and S3 has one end point within one pixel from S The angle
between S and S measured at the head of S1 taking S2 in the
3 1 212

direction opposite to the orientation of S1 is usually very small.
This clue is used by the NSF if a change in direction occurs to

determine the selection or rejection of a one pixel long segment as a

suitable next segment.

2) Regions that can be described as parts or subparts tend to be

convex shaped. Figure lc shows that the process can be side tracked

if the angle eI between the current segment S1 and S3 is larger than

180 degrees. To avoid this, the NSF places a window centered at the

end of the current segment SI . This window can grow up to three

pixels in diameter in an attempt to locate a segment which preserves

convexity.

3) If N is the size of the masks used during the boundary I
detection process, short segments lying within (N-l)/2 pixels of the

frame of the picture are considered unreliable due to the incomplete

data resulting from the convolution of the picture data with the

masks. These segments are eliminated in a preprocessing step.

4) Non-oriented segments generated by the radial line detection

process described in (1] fall one pixel short of the location where

they would meet existing segments. These segments are shown in

figures Id and 3 as thick lines with no orientation. Figure id shows

the current segment S., the segment S3 with one end point within one

pixel from SI , and S2 with one end point located two pixels from SI .

Notice that although segment S3 meets all the criteria for a suitable

next segment, the desired next segment is S2 . By extending the loose

158

end of the non-oriented segments by one pixel in the preprocessing

step, the desired next segment can be easily selected.

When the process is unable to select a suitable next segment

given the above considerations, the current segment is extended by up

to a fixed number of pixels. At each step a suitable next segment is

sought for. The trace of the current region is terminated if no

suitable segment is found and the region being traced is classified as

an incomplete part.

Two criteria determine a closed region. The starting point of a

trace is within one pixel of the ending point and/or the sum of the

exterior angles is approximately equal to 360 degrees in absolute

value.

b. Region descriptions

Some region properties can be inferred by observing the

orientation of the segments along the boundary of a region as shown in

figure 2. Basically the parts and spaces can be differentiated oy

whether the segments in the boundary are oriented in the same

direction as the trace or in the opposite direction. Related line

labeling analysis can be found in [2].

Occlusion is indicated by not all segments pointing in the same

direction, compared to the direction of the region tracing. By

generating a set of triples (A,B,C) indicating that region A and

region B share a common segment C, the following can be asserted:

- If the B component in a triple occurs only once among the set of

all triples then region B occludes region A and region A cannot be

merged with any other region to form a larger region. In our example

shown in figure 3 the triple (5,1,Si) corresponds to region 5 (A

component) being occluded by region 1 (B component). No other triple

contains region 1 as its B component and therefore region 5 cannot be

159

.4/' / Complete Part

Sub Parts

J__ Space

L17 Complete Hole

Figure 2. Types of regions.

160

12

CLASSIFICATION OF REGIONS

Region 1: complete part Region 10: subpart
Region 2: complete part Region 11: complete part
Region 3: complete part Region 12: space
Region 4: complete part Region 13: space
Region 5: subpart Region 14: space
Region 6: subpart Region 15: space
Region 7: complete part Region 16: space
Region 8: subpart Region 17: space
Region 9: subpart Region 18: incomplete part

OCCLUS ION

Parts occluding one part:
Subpart 5 is occluded by complete part 1
Subpart 6 is occluded by complete part 4
Subpart 8 is occluded by complete part 4
Subpart 9 is occluded by complete part 8
Subpart 10 is occluded by compete part 7

Parts occluding two parts:
Subparts 6, 8 are one part occluded by complete part 4

Figure 3.

161

merged with any other region.

- If the A component in a triple occurs only once among the set of

all triples then only the region indicated by the B component occludes

it. In our example the A component in the triple (9,8,S) corresponds

to region 9 and occurs only once. Therefore only region 8 occludes

it.

- If two or more triples have the same B component, they can be

merged to form a larger region provided they lie on the same plane.

By finding some of the interior points in the occluded regions, the

coefficients of the equations of their plane surfaces can be

estimated. If the two planes are within certain tolerances of each

other, then the occluded regions can be merged to form a larger

region. In our example the triples (6 ,4 ,Sk) and (8,4,Sz) have the

same B component. By estimating and comparing the coefficients of the

planes on which regions 6 and 8 lie, it is determined that they can be

merged to form a larger region.

- If two or more triples have the same A component then two or more

regions occlude the region indicated by the A component. The

occluding regions (B components) can be merged to form a larger

occluding region if they lie in the same plane and have at least one

segment in common. No instance of this case occurs in our example.

Figure 3 shows the regions in our example and the classification

made by the program and the description of how regions occlude other

regions.

References

[1]. S. Inokuchi and R. Nevatia, "Feature Extraction in Range Data,"

Image Processing Institute, USCTPI Technical Report 960, March 1980.

[2]. K. Sugihara, "Range Data Analysis Guided by a Junction

162

Dictionary," Artificial intelligence Journal, Vol. 12, 1979,

pp. 41-69.

163

- I

3. HARDWARE IMPLE ENTATION OF IU ALGORITHMS

ADVANCED IMAGE UNDERSTANDING USING LSI AND VLSI

S.D. Fouse, V.S. Wong, and G.R. Nudd

Hughes Research Laboratories
Malibu, California 90265

Abstract

We describe here the work undertaken at the Hughes Research

Laboratories, Malibu, in support of the DARPA Image Understanding (IU)

program. This report covers the period from May 1980 through September

1980. The principal aim of our work during the present phase of the

contract is to investigate the applicability and potential benefit of

very large scale integrateion (VLSI) to IU systems. Our work towards

this goal includes detailed logic design for two intermediate-level IU

systems, a line finder and a texture classification system, and identi-

fication of a highly modular programmable digital processing element,

which is currently under construction. In addition to the major empha-

sis of the program, we are directing our work so that the hardware

designed will be fully compatible with existing commercial hardware such

as the DEC mainframes. The details of the work that has been completed

to date as well as our goals for the program are described below.

164

I. INTRODUCTION

The main emphasis of this program is the investigation of the

impact and potential benefit of very large scale integration (VLSI) and

high-density IC technologies for image understanding. The task is some-

what wider than our previous work for the Image Understanding Program,

where we successfully developed special-purpose high-speed primitives for

the low-level processing operations.

The progress that is currently being made in silicon technology

and the development of more sophisticated algorithms for image under-

standing provide the basis for a major advance in processing capability.

The work described here is being undertaken at Hughes Research Laborator-

ies (HRL), where we are actively involved in the development of image

analysis and understanding software for applications such as terminal

homing, image bandwidth compression, and scene matching. We also have

numerous active research programs in micro-electronic technology. The

people involved in this program were also involved in the VHSIC-O pro-

gram. In addition at HRL we have eleven VHSIC-3 technology development

programs. We are therefore aware of the major developments in these and

other important programs, and, where appropriate, we have coordinated

our efforts.

Our major emphasis has been to review numerous complex image-

understanding algorithms and devise VLSI concepts for them. This

includes understanding the processing, data flow, timing, and storage

requirements. We have also performed a detailed partitioning of poten-

tial VLSI chips based on total gate count, silicon area, communication

requirements, and power considerations. From this work, three poten-

tial systems have emerged: a line finder, texture analyzer, and

segmenter. The details of this are included in this report together

with the necessary gate estimate and parts count for VLSI chips

(Tables 1 and 2).

In addition to this, we have, through our detailed analysis of

the VLSI processor requirements and configuration, identified 3 highly

modular programmnable digital processing element RADIUS (residue-based

arithmetic image-understanding system). These concepts are now being

165

developed in state-of-the-art n-MOS technology, and we anticipate that

the first demonstration will be available in the early part of 1981.

Since RADIUS is based on residue arithmetic, it can perform a wide vari-

ety of processing operations (including variance and moment calcula-

tion) and all convolutions and local area operations with very high cir-

cuit function density. The modularity of our approach allows rapid and

easy design in VLSI and provides programmability and portability.

In addition a major emphasis of all our work at this point is

to ensure that the hardware concepts and changes will be fully integrat-

able with existing commercial hardware, such as the DEC maintrames. To

this end, we are developing the necessary interfaces to the RADIUS pro-

cessor so that it can be used as an attached processor to the DEC series,

communicating through the DEC-UNIBUS. We are obtaining a PDP11-34 to

use as the test vehicle for our approach. We anticipate that this machine

will be available in mid-1981, after which the successful development of

our hardware and interface will provide a means for integrating the system

into the DARPA IU test-bed as well as other systems.

Our work on more complex IU algorithms in addition to the three

cited above will continue to enable us to identify special elements in

the IU chain that can appropriately exploit the VLSI and VHSIC develop-

ments. This work, to be reported on in the next semi-annual, will include

concept developments, partitioning, simulation, chip count, and where

appropriate, layout details.

IT. METHOD

Our objective for this project is to provide some general results

that will allow the image understanding community to take full advantage

of VLSI technology as it becomes available. We expect our results to

include definitions for several special-purpose chips that will have

wide applicability to IU systems. The question to be answered then is

what types of functions should be cast into a VLSI chip. The goals of

this program are analogous to the on-going VHSIC efforts where they are

searching for commonality across a broad range of DOD systems. Here we

are trying to take a longer range view specifically for image understanding.

166

The project has been coordinated with the Hughes VHSIC program and shares

many goals with it. The major difference is that we would like to see

commonality across IU systems. We are tracking the VHSIC program, and,

where appropriate, we will be able to take advantage of the work being

done there that complements our own effort.

The area of this study is necessarily somewhat broad. it differs

considerably from our previous work, where we developed special-purpose

high-speed primitives for IU. Our aim this period has been to stand

back and take a broad a vew of IU requirements and to attack the ques-

tion of what special-purpose VLSI functions would be appropriate for IU

systems that will not be developed under present or foreseeable VHSIC

programs. Our approach is to

0 Select three representative systems to study and
characterize

* Perform a commonality study across the three systems

9 Do logic designs for each system

a Partition the designs onto VLSI chips

* Test and refine designs using simulation techniques

* Identify relevant system parameters

0 Generalize to additional systems and refine function
partitioning.

So far, we have selected three systems and performed a prelininary

comonality study, identifying one subsystem as a likely candidate for

a VLSI chip. This is a local area processor which will perform sliding

window arithmetic operations including convolution, variance, and

moment calculations. We have designed a processor based on the residue

arithmetic technique that should provide significantly better perform-

ance for this type of operation than a binary processor. In addition,

we have performed logic designs on two of the three systems selected:

the line finder and the texture classification systems. What remains

to be done is to design the third system, the segmenter, refine our

designs using results from simulations, and then extend the results

to additional IU systems.

1 7

III. RESIDUE-BASED ARITHMETIC IMAGE UNDERSTANDING SYSTEM (RADIUS)

Almost all of the systems we have looked at require some sort of

local-area processing where the output pixel is a function of the input

pixel and its M nearest neighbors, where M is usually 8, 24, 48, etc.

The function takes numerous forms but typically is either arithmetic or

logical or a combination of both. If the function is arithmetic and

does not require division or absolute value, then residue arithmetic

techniques can be used. Examples where these conditions are met can be

found in two of the systems we are studying: the line finder and the

texture classification systems. The line finder detects edges by con-

volving the image with six 5 x 5 masks, each mask responding to a dif-

ferent direction. Since the convolution operation requires multiplica-

tions and additions, this is easily done using residue techniques. Simi-

larly, the texture classification system convolves the input image with

several 5 x 5 masks.

An arithmetic local area processor seems to be a natural choice

for a subsystem that can take advantage of VLSI technology. This is

because of the complexity of the logic for doing multiples. Using cur-

rent technology, a high-speed multiplier requires an entire chip (such as

the TRW 10-MHz multiplier). One approach being considered for real-

time hardware is to compromise on te coefficients and thereby reduce the

complexity of the hardware. The residue techniques can offer signifi-

cant advantages without compromise, since multiplication can be per-

formed using look-up tables; these tables will be small because the bases

used will be small. As an illustration of this, Figure 1 shows the com-

ponents involved in RADIUS. The input data are initially encoded into

its equivalent representation in each base. This is most easily done using

a ROM lookup table with an address space equal to the input dynamic range

and a bit depth equal to the number of bits required to represent the

Base-l. The actual computation is then performed by the local area

processors, one processor per base used. The processor output word size

is identical to the input word size with no loss in accuracy. This is

due to the modular nature of residue arithmetic. The data out of the

convolvers then goes into a residue-to-binary decoder. This block can

168

BASE RADIUS PROCESSOR o
BASE B8 -

BASE RADIUS PROCESSOR
BASE

INPUT RESIDUE
D DECODER

S RADIUS PROCESSOJR f
a N. BASE BN.1

N-1

BECDE RADIUS PROCESSOR
BN BASE BE N

Figure 1. A residue-based processor.

169

be composed of a very large lookup table or a system composed of ROMs

and adders. The exclusive use of look-up tables is well suited to VLSI

since these are highly regular structures and hence can be made very

dense and inexpensive.

Many arithmetic operations can be performed with table look-ups,

but without the residue concept, this approach is typically not feasi-

ble, as the tables required become overwhelmingly large. Since both the

line-finder system and the texture system utilize 5 x 5 convolutions,

the processor system should be capable of being used to perform 5 x 5

convolutions with programmable weights. The dynamic range capabilities

of the system should allow for 6 bit input and 6 bit kernel weights for

a total output dynamic range of 17 bits. In addition, the system should

be able to operate at a 10-MHz data rate. The dynamic range of a resi-

due computation system is determined by the product of all the bases.

Using 31, 29, 23, and 19 as bases will give us a dynamic range of 392,863,

which exceeds Z17 The bases will have other benefits since they are

al prime numbers.

Figure 2 shows a block diagram for a 5 x 5 local area processor

for a single base. There are five data inputs, one for each line of the

5 x 5 area. Each input data is put into a register which is the first

element of a five-element shift register. When new data is transferred

in, the previous data is transferred to the next register, and so on.

There are five inputs and thus five shift registers w.ith five elements

each for a total of 25 registers. The contents of each of the 25 regis-

ters are used to address 32 element by 5 bit RAWs. These RAMs are

lookup tables for the multiplication of the input data and the kernel

weight. The outputs of the 25 RAMs are then added by a tree of 24 resi-

due (or modular) adders. A residue adder calculates (A + B) mod base.

There are several points to notice about this design. First,

only 5 bits come out of the multiply or add. This is because these

operations are cyclical, and the output values are in the same range as

each of the input values. The second point is that the only part of the

processor that is dependent on the base is the residue adder. Since

the multiplier must be programmed for the weights anyway, the choice of

170

ADDO

ADDO

Figur 25 5 lRAM 5rapoesr

AD71

base is also programmed at the same time. Lastly, concerning the

programming of the RAMs, a bidirectional data bus will be provided on

the data lines of the RAMs to allow programming as well as to serve as

a test point in the processor. Additional control lines into a binary

decoder will be required for programming and controlling the bus for

testing. A possible design for the residue adder is shown in Figure 3.

Essentially, the device performs a binary addition of the two operands,

compares the result to the base, and subtracts the base if the result is

greater than or equal to the base. The adder is programmed by proviaing

the base value to the comparator and the two's complement value of the

base to the second adder. The programming can be done in one of two

ways. First, and preferable, is to providea register on the chip for

the base value and another register for the two's complement of the

bases. The value in the register must then be made available to each of

the residue adders that will be on the chip. The second alternative

is to make the base programmable by using a ROM. This has the advantage

that base values can be stored directly in the adder, which will prevent

possible routing problems.

We are developing a chip based on RADIUS. However, to reduce the

cost of development and the associated risk, we are restricting the chip

to a 5 x 1 area processor. If this demon tration is successful, we will

be able to use the designs and digitized data base as a common module to

be prepared across an entire VLSI chip, resulting in a very high density,

high throughput processor. Figure 4 shows the design for a 5 x 1 proces-

sor, and Figure 5 shows the configuration of a 5 x 5 convolution system

which utilizes the 5 x I processor chip. The data are encoded using a

64 element by 20 bit ROM. The kernel is generated using four 20 bit

wide line delays, 5 bits fcr each base. The output of the line delays

is input directly to an array of 20 5 x I processors, five for each base.

For each base, four 1024 x 5 bit ROMs are used to sum the results of

the five rows. Note that conventional adders cannot be used since these

additions must be done modularly, just as on the chip. Finally, 5 bits

from each base convolver is input to a decoder network, which wiJl be an

array of ROMs and possibly some logic. The output of the decoder is

172

C-99WLL

LA (nz
_j Lj L

<
LLL V3C

ujQ

wC

0S

17 3

u.j

0 LO

LO LO

LO LO T.

LO LO L ULO LO

x x x x1x4

<L<C,4C, ,

s-qC 1w

00 00 0 0 0D0 0 00

0 0 0o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 p.,I I u
x LO cc k 6n n InLO76

then a 17 bit binary word. We expect that parts will be available for

testing by March 1981, and that a demonstration system such as depicted

in Figure 5 will be completed by July 1981.

IV. TEXTURE CLASSIFICATION SYSTEM

As mentioned earlier, logic design was performed for both the

texture classification system and the line finder system. This section

describes the design generated for the texture system. Figure 6 illus-

trates the data flow of the texture system. The input video is pro-

cessed in N independent channels, where each channel generates an ele-

ment of a feature vector. This means that, for each scalar pixel input,

there is a vector value output, the length of the vector being equal

to N, the number of channels in the system. The processing done in the

channels involves a small window convolution, a normalization step, and

a large window energy measure. The outputs are combined to form a vector,

which is then transformed using a linear transformation. The elements

of the transformed vector are used to evaluate a discriminant function,

the value of which is used to perform the classification. Alternatively,

the transformed feature vector can be input to a segmentation routine.

Six major functions must be performed:

* Small window convolution

* Small window statistical calculation

" Scaling

a Large window statistical calculation

" Linear transformation

0 Discriminant function evaluation.

We discuss below the operations involved in each of the functions and

the hardware required to perform the functions.

176

LAWS' TEXTURE SYSTEM
9518-1

INPUT DATA RATE

N2 F PIXEL/SEC - NXN SERIALLY SCANNED IMAGE
IF - F IMAGES/SEC

8, O2 F BITS/SEC

KERNEL (5x 5 (4 LINES MEMORY)
GENERATION

40 40 40 40

(24 +/

8 8 8 N2 F (25 PIXEL MEMORY)

KERNEL 4 LINES MEMORY

NORMALIZATION XSV 26
49+

8 a 8N2F1 SORT

ENERGY MEASURE -- 31 LINES
.... (LARGE WINDOW) MEMORY

(31 x 31) STATISTICS 10 OPERATIONS/PIXEL
8 8, N 2F

PRINCIPAL 2
COMPONENT X M2X

TRANSFORMATION 8 MULTIPLY M(M- 1) +
MULTIPLY 8M N2F

FEATURE SELECTION (THRESHOLDING)

CLASSIFICATION 8 M' (N') 2 F SEGMENTATION8M' (N-"
01SCR IMINANT 8M N)F1)
FUNCTION F POLYNONIAL
EVALUATION 8 COEFFICIENTS SEGMENTER

Figure 6. Laws texture classifier.

177

A. Small Window Convolution

The first step in the processing involves computing a 5 x 5

convolution. The design of a system (RADIUS) to perform this computa-

tion using the technique of residue arithmetic is presented in the pre-

vious section. The basic block that perfbrms the 5 x 1 convolution is

now being designed as an MMOS chip (CRC 181) at the Hughes Carlsbad

Research Center.

B. Small Window Statistical Measure

A general structure for calculating a statistical moment over a

two-dimensional window was described in Hughes invention disclosure

PD80078; Figure 7 shows the specific structure for calculating the vari-

ance over a 5 x 5 window. This architecture assumes that the image

data are being input in raster scan format. As each pixel is intro-

duced into the system, the window that is being processed is shifted

one column to the right, dropping the left-most column and adding the

column on the right. This means that the function for the new window

position can be calculated by subtracting the contribution of the lost

column and adding the contribution from the new column. It should be

noted, as illustrated in Figure 8, that as the center of the 5 x 5

window moves across the image each subsequent kernel can be formed by

the removal of a single pixel at the top right, for instance, and the

addition of one new pixel at the bottom left. With this proviso, we

can scan the image directly by successively eliminating the 5 pixel

column at the trailing edge and adding the new column on the right As

shown. Figure 8 illustrates this method for updating the window

function.

This technique greatly reduces the necessary data bandwidth for

calculating the mean and the sum of squares for the processing window;

these can then be combined to form the variance. The structure

shown includes shift registers for pixel storage, column sturage for the

mean calculation, the column storage for the sum of squares calculation.

178

PIXEL STORAGE

TOTAL

Figure + 7.+x5vracec~uai

ME79

;t sLo

-I L

LI Z-J

003

-j-zz LJ
O

180

The only arithmetic logic required for this structure is four 3-input

adders and three multipliers.

This is a function that could be implemented using a residue tech-

nique, since only arithmetic functions are being performed. Since

the preceding function is already being performed using residue arith-

metic, the conversion back to binary could be done after the moment

calculation. The structure would look identical, but the blocks them-

selves would each be smaller. For example, with a smaller wordsize the

memory would be reduced. Also, the multiplier box could be replaced

with look-up tables, thus providing a savings in hardware. To deter-

mine the feasibility, a statistical dynamic range analysis will be per-

formed to see how many bases would be required and thus if the residue

technique could provide normalization.

C. Normalization

The next major function to be performed is a division or nomali-

zation function. The output of the convolutions are divided by the out-

put of the small window moment calculation, on a pixel by pixel basis.a

This requires that there be some memory to delay the output of the con-

volutions while the moment is being calculated. The memory required

would be approximately 5 line lengths x 8 bits x N channels.

A pipelined system for performing an integer divide is shown in

Figure 9. This performs a division between two binary numbers using the

direct method: an 8 bit divisor would require 8 stages. If more

precision were required, more stages could be used, and these would cai-

culate the fractional part of the answer. The direct method was chosen

over the iterative method because of the synchronous nature of this

system.

D. Large Window Statistical Calculation

The structure for performing the large window statisLical calcu-

lation is the same as for the small window calculation. The function

suggested by Laws is the sum of the absolute values of the pixels.

181

c-o

L.

o o

cc z

182

Figure 10 shows a structure for performing this function. As

suggested in the discussion of the small window moment calculation,

this structure could be implemented in residue. In fact, if the normal-

ization step could be skipped, then the whole system could be accom-

plished in residue. There are two problems, however:

0 An absolute value cannot be accomplished in residue
and thus the next best thing would be to use the
sum of squares.

0 A preliminary dynamic range analysis using the sum
of squares over a 15 x 15 window indicates that the
system would need to support a dynamic range in
excess of 36 bits. This would definitely be pro-
hibitive in that a large number of bases would be
required and the bases themselves would require over
5 bits to encode.

It may be that a statistical dynamic range analysis will show that it is

possible to achieve a low probability 3f overflow with a more reason-

able dynamic range (e.g., <30 bits).

E. Linear Transformation

This function will generate a vector with M components by form-

ing linear combinations of the N components of the input vector. Since

the structure shown in Figure 11 can be used to generate a single com-

ponent of the output vector, the en -ire output vector can be generated

by replicating this structure M times. This structure is basically

the same as that used for the convolution. It is composed of N

registers, N multipliers, and N-I adders. As with the convolution the

value of the linear weights will be programmable, with the actual mech-

anism for programming depending on the structure of the multiplier

(either memory look-up or logic). The only difference would be in the

format of the data input. For the convolution, the data are shifted

through the registers; but for the linear transformation, the registers

are all loaded in parallel.

183

IMAGE: LXL
WINDOW: NXN

INPUT PUL IEL STRG ADDLIER OFLTREE

+ OOUT

Figure 1. Lar wanonrgmanstrure l.

INPUTMULTILIER ADDE1TRE

F. Discriminant Function Evaluation

No hardware was designed for this processing step since the

form of the function is unknown. If the function is linear, then the

structure used in the previous step could also be used for this one.

Any other form, such as a higher-order polynomial, would require addi-

tonal multipliers and adders.

G. Gate Count Tabulation

Table 1 summarizes the results of the texture system design,

presenting the number of gates required for each function. These data

will be used later in the study for the VLSI partitioning.

V. LINE FINDER SYST1I

This section describes the logic design of the line finder sys-

tem. Figure 12 shows the data flow graph for the system and identifies

four major functions:

* Edge detection

* Edge thinning

* Edge linking

* Edge tracing.

A design is presented for each of the four functions, and an estimated

gate count is given.

A. Edge Strength Computation and Detection

Edge strength computation is performed by convolving 5 x 5 masks

in six directions with the image of interest (Figure 13). The mask

directions are set at 300 intervals, and the weights are shown in

Figure 14. Following edge strength computation, the magnitudes from the

six directions are compared, and the direction with greatest magnitude

is selected as the edge vector for the pixel location.

There is some question as to what the optimum mask size, weights,

and number of mask directions should be. For example, a larger mask size

185

96 18-2

NEVATIA LINE FINDER

N
2

F

KERNEL I 14 LINES MEMORY I
GENERATION

40 N
2

F

40 40 40 40 40 40
5 5 CONV 20X 25 PIXEL

19+ MEMORY

88 a a 8 N
2
F

EDGE DETECTION 5CMPS. I.

12 N
2

F (EDGE MAG. 8 BITS)
(EDGE DIR. 4 BITS)

KERNEL 13,x 31 (2 LINES MEMORY)
GENE RATION

36 N
2

F

F
THINNING THRESHOLD (5 CMPS -5 ADDS)

12 N
2

F

KERNEL (2 LINES MEMORY)
GENERATION

38 O
2

F

PREDECESSOR, SUCCESSOR
GENERATION

110 COMPARES

FOR 3 x 3 TEMPLATE)

10 N
2

F

EDGE (CU RRENTLY REQUIRES 2 FRAME
LINKING MEMORY - 3 PASSES REQUIRED)

LIST OF CONNECTED
EDGE SEGMENTS

Figure 12. Nevatia-Babu line finder.

186

0
(U

wz

c

oo

<0 0 <0 -3

(N fl

z z

coo
Lnl

wU

2.8

-100 -100 0 100 100 -100 32 100 100 100

-100 -100 0 100 100 -100 -78 92 100 100

-100 -100 0 100 100 -100 -100 0 100 100

-100 -100 0 100 100 -100 -100 -92 78 100

-100 -100 0 100 100 -100 -100 -100 -32 100

(a) 00 (b) 300

100 100 100 100 100 100 100 100 100 100

-32 78 100 100 100 100 100 100 100 100

-100 -92 0 92 100 0 0 0 0 0

-100 -100 -100 -78 32 -100 -100 -100 -100 -100

-100 -100 -100 -100 -100 -100 -100 -100 -100 -100

(c) 600 (d) 9 0

100 100 100 100 100 -100 100 100 32 -100

100 100 100 78 -32 100 100 92 -78 -100

100 92 0 -92 -100 100 100 0 -100o -100

32 -78 -100 -100 -100 100 78 -92 -100 -100

-100 -100 -100 -100 -100 100 32 -100 -100 -100

(e) 1200 Mf 150 0

Figure 14. Edge masks ~L(~)in six directions.

,c, o° Io,,oo3

(say 5 x 5) is more immune to noise, but takes considerably more hardware

to implement (than say a 3 x 3 mask). The same can be said for implement-

ing the masks in six directions as opposed to four. It would be desir-

able from a hardware point of view to use a small mask size and as few

mask directions as possible without sacrificing too much on performance.

RADIUS can be used to perform the six convolutions. Following these

six convolutions, direction tags will be added to the edge magnitudes

(see Figure 13). Each data word consists of 12 bits at this stage, 8 bits

for magnitude and 4 bits for direction. The magnitude part of each

direction is then compared with that of the other directions, until the

direction with greatest magnitude is found. Five comparators are

needed to perform the magnitude comparisons.

Figure 15 shows the logic for performing the magnitude comparison.

The corresponding bits of each data word are compared in turn, and

greater than (G) and less than (L) signals propagate towards the msb

bits. G{9} and L{9} indicate whether A is greater than or less than B.

If G{9} and L{O} are both low, then the two words are the same. Sixty

four gates would be necessary to implement a full 8 bit comparator.

Hence 320 gates would be necessary to implement the five comparators in

the edge detection step. It has been estimated that it takes 178 K gates

to implement the six residue convolvers. This is by var the most hard-

ware intensive computational part.

B. Thinning and Thresholding

Thinning in Nevatia's process is accomplished by comparing the

edge magnitude and direction at a pixel location with that of some of

its- surrounding eight neighbors. To qualify as an edge point, the fol-

lowing rules must be observed:

(1) The edge magnitude at the pixel location must be
greater than that of its two neighbors in a direc-
tion normal to the direction of this edge. The
normal to a 30' edge is approximated by the diag-
onals of a 3 x 3 grid.

189

A 8 B8 A 7 B 7 A B1 A 8

L 1: SIT0

A.A

B.B

G. L.

G LL

A. B.

Gi1 '1 Ai i +-G. i ' +G A. i i ~B + Li %+ L B.

(4 GATES) (4 GATES)

TOTAL NUMBER OF GATES TO IMPLEMENT 8 BIT COMPARATOR - 8 X (4 +4) =64 GATES

Figure 15. Logic for performing magnitude comparison.

190

(2) The edge directions of the two neighboring pixels,
as defined in (1), must be withirr 1 unit difference
(308) from that of the central pixel.

(3) The edge magnitude of the central pixel must exceed
a certain fixed threshold. This threshold is arbi-
traritly set at some low value.

When implementing in hardware, the algorithm can be divided into two

parts: The first accesses the edge magnitude and direction of the two

neighbors normal to the direction of the edge. The second compares the

magnitude and direction of the central pixel with those of the two neigh-

bors and a fixed threshold to ensure that conditions (2) and (3) above

are met. Figure 16 shows the logic for performing thinning and threshold-

ing. The eight neighbors of the central pixel are first sent to a

switching network, which decodes the edge direction of the central pixel

and allows the edge data for the correct two neighbors to pass on to the

comparison network. In the second part, the edge magnitudes and direc-

tions are compared, and, if conditions (2) and (3) are met, an edge point

is presumed present. A gate count reveals that 190 gates are needed:

8 for the switching network and 181 for the comparison network.

C. Edge Linking

At this point, the data format for each pizel is pictured in

Figure 17. One bit is assigned to indicate if the pixel is an edge

point, 3 bits to indicate the direction of the edge, and 8 bits to

indicate edge strength. The next step is to link the edge points

together by forming predecessor and successor members. There are at

most three possible candidates to be a predecessor or successor among

the eight neighbors of an edge point; however, an edge point can have

at most two predecessors and two successors. In such a case, only the

primary predecessor (or successor) is encoded, and a special bit is

marked to indicate the presence of a fork. The following rules are

observed in edge linking:

191

Ld "Vow

NEIGHBORS RELATIVE 1
ABSOLUTE TO ORIENTATION OF W
NEIGHBORS MIDDLE PIXEL

M

8
G M. MAG - M.MAG'

THRESH -THRESH?

C8

M. MAG - M. MAG

Nbr (4) C. MAG - C. MAG ?

Nbr (2) Nj1 011, Ill G. MAG - G A

M. DIR C I. DIRI.J

-001,101 M. DIR IM.DIR -

Figure 16. Logic for performing thinning and thresholding.

192

12 11 10 9 8 7 6 5 4 3 2 1

DIR MAG

EDGE
POINT

Figure 17. Data format for edge point after thinning and

thresholding.

10205-13

N -"

(a) FORK, 2 SUCCESSORS THAT (bl FORK, 2 SUCCESSORS THAT ARE
ARE NOT 4-NEIGHBORS 4 NEIGHBORS, BUT WHOSE ORIENTATION

DIFFER BY 2 UNITS (60 DEGREES)

(c) NO FORK, 2 POSSIBLE SUCCESSORS (d) FORK, 3 POSSIBLE SUCCESSORS
WHOSE ORIENTATIONS ARE THE SAME.

Figure 18. Some successor configurations illustrating edge linking

rules.

193

(1) The orientation of a predecessor (successor) must be
less than 1 unit difference (300) from that of the
central edge point.

(2) If there is! more than I possible predecessor
(successor.), a fork will exist if they are not
4-neighbors or if their orientations differ by 2
units (600) if they are 4-neighbors. In such a
case, the predecessor (successor) with the greater
magnitude is encoded as the primary predecessor
(successor). If the possible candidates are 4-
neighbors with the same orientation, the chosen can-
didate is the nearer of the two in the Euclidean
sense.

The interested reader is referred to Refs. 1 and 2 for more details on

the rules concerning edge linking. Figure 18 shows some successor con-

figurations illustrating the above rules.

The logic for edge linking is shown in Figure 19. In the first

section, a shifting network decodes the edge orientation of the central

pixel and accesses the edge data for the three possible successor

(predecessor) locations. This edge data is then sent to a comparison

network that tests whether conditions (i) and (2) above have been satis-

fied. The results are then sent to a PLA containing about 40 minterms,

the output of which indicates the successor and whether a fork is

present. The coding for the PLA is shown in Figure 20. The gate count

is 6 for the shifting network, 72 for the comparison network, and 170

for the PLU, for a total of about 250 gates. Formation of the predecessor

numbers would take another similar sized network, bringing the total

number of gates to about 500.

D. Edge Tracing

In this step, the predecessor/successor (PS) elements formed in

the previous operation are linked together. The data format for the PS

file is shown in Figure 21. Included in this format is a trace bit

which indicates whether the point has already been collected The PS

elements are linked in three passes:

194

pa

__________________________H.__EDGE_

M. DIR

Fiur 19. Loi fo Rdelnig

195]

Lw Lw 1. I I ' i I 1" A ,'

w ,Uw w 0 0 3 3 PRIMARY
" " , FORK SUCC

0 0 0 . 0 0
0 o I - - 0 . 0 0

- - 1------ -- 0 B
0 1 0 - 0 ... 0 0

- 1 - 0 A
1 0 0 0 - - 0 0

1 - - 0 H

o 1 1 - 0 0 0 0

- 0 1 0 B

- 0 0 A

- 1 1 - - 0 - - 0 1 B
- - 1 1 A

1 - - - 0 A

0 1 0 - 0 0 0

0 - 1 0 B

1 - 0 0 H

1 - 1 - 0 - 1 B

- 1 - 1 H

1 0 0 0 - 0 0

0 1 - 0 A

1 0 - 0 H

1 1 - 0 - - 0 - - 1 A
1 - - 1 H

1 0 A

1 0 0 0 0 0

1 0 0 0 H

0 1 0 0 A
0 0 1 0 B

1 0 1 0 - 1 a
- I - 1 H

1 1 0 0 - - 0 - - 1 A
1 - - 1 H

1 -. .. .0 A

o 1 1 - - 0 - - 0 1 B
- - 1 1 A

- - 1 - - - 0 A

1 1 1 0 0 - - 0 1 B

- - 1 1 A

0 0 1 0 - - 1 A

1 - - 1 H

Figure 20. Coding for edge linking PLA.

.6

11 10 9 8 7 6 5 4 3 2 1

FORK PRED FORK SUCC
NO PRED

TRACE NO SUCC
BIT

Figure 21. Predecessor/successor data format.

1

197

(1) In the first pass, a raster scan is made of the PS
files in search of an edge point with no predecessor.
Edge tracing begins at these points, and only the
primary successor elements are linked when there is
a fork.

(2) In the second pass, the edge points that have forks
are revisited, and the secondary successor elements
are linked.

(3) In the third pass, circular edge sements with no
starting or fork points are linked. This requires
scanning the trace file to find an edge point that
has not been collected before and then traceing out
the circular segment.

It would be undesriable to perform edge tracing in three passes if the

operation is to be done in real time, since the requirements on buffer-

ing and speed of the hardware would then be quite severe. The three

passes for the operation could be reduced if all the start and fork

points were identified in a previous step, and the addresses stored in

a list. The start address for tracing an edge segment could then be

provided by is list instead of by scanning the PS file. This could

result in considerable time saving, since typically less than 10% of

an image are edge points and only a fraction of those are start and

fork points.

The logic for edge tracing is shown in Figure 22. Two 5.5

megabit memories are needed for storing the PS files. While edge tracing

is being performed on the edge ddta in one memory, the other memory is

being filled with fresh data. The "start and fork" list provides the

starting address of an edge segment. The PS information fetched for this

point is used to form the edge linked list, and also to generate the

address of the successor to be fetched. The address modification unit

acts as a controller enforcing the three rules above and may broadcast the

address of a new pixel to be fetched, modify the address of the previous

pixel fetched, or decide that a fork is present and broadcast the

address of the secondary successor that is to be fetched.

198

uJLJ
0 I

0 c

(n
(-

0
U)
U)

UU -

U.,

+w

00
Pw

a 00.

199

E. Gate Count Tabulation

Table 2 summarizes the results of the line finder system, presenting

the number of gates required for each function. As with the texture

system, these data will be used later in the study for VLSI partitioning.

V. SYSTEM INTEGRATION TO HOST PROCESSOR

A principal area of our present work is to analyze and develop

hardware that will be integrated into a commercially available test sys-

tem to make it portable and extendable. One factor expected to affect

the partitioning substantially is the input/output requirements of the

system. The data flow graphs specify the bus widths and the basic data

inputs and outputs, 'ut absolute bandwidths and control requirements

cannot be specified until an operating environment has been defined. In

the past, when we have fabricated CCD LSI image processing chips, they

have been used in a stand alone system with dedicated input and output

devices. The bandwidths of these devices specified tne bandwidth of the

data paths on the chip. But we do not expect some of the systems being

examined in this study to be used in a stand alone system; instead we

expect them to be used as a peripheral device toa host general-purpose

processor. This requires then that we expand our system study to

include the implications of using a general purpose computer to host

the IU systems.

We are currently acquiring a PDP 11/34 computer system to provide

us with a means of collecting our own experimental data on the inter-

face problems. Our immediate plans involve integrating the residue local

area processor on a card which connects directly to the DEC UNIBUS. We

plan to use direct memory access to transfer the data to and from the

processor, since this will free the host processor for other duties.

This experimental work will be complemented by a study of other systems

that use special purpose image processing devices as peripheral devices,

200

Vl. FUTURE WORK

The work described above will continue over the next year with

particular emphasis on the following areas:

* Development of VLSI RADIUS processor

* Design and partioning of IU systems

* Design of segmenter system

a Coummonality studies

* Simulations cf designs

* Integration of system to host PDP 11-34.

2

201

REFERENCES

1. R. Nevatia and K.R. Babu, "Linear Feature Extraction and
Description," to be published in CUIP, 1980.

2. R. Nevatia and K.R. Babu, "An Edge Detection, Linking and Line
Finding Program," USC IPI Report No. 840, Sept. 1978.

3. C.S. Swigert, "Decoding the Edge Detection Linking and Line
Finding Program of R. Nevatia and R. Babu," HAC Memo ESD 545,
Oct. 1979.

4. V.S. Wong, "Description of Edge Finding Process in Thesis by
V.S. Wong," HAC Memo ESD 303, Aug. 1980.

5. S.D. Fouse, "Proposal for Residue Convolver Chip," HAC Memo

ESD 242, July 1980.

6. R. Babu, Private communication.

7. R.O. Duda and P.E. Hart, "Pattern Classification and Scene Analysis,"
Wiley, 1973, pp. 338-339.

202

Table 1. Gate Count for Texture Classification System

5 line kernel generation 15 K gates

5 x 5 convolution 27K gates/channel

5 x 5 variance 10K gates

Normalization IK/channel

Large window statistical calculation 8.25K/channel

Transform (M input channels) 2.lK.M/output channel

203

r

Table 2. Gate Count for Line Finder System

Edge detection 178K

Thinning 190 gates

Edge linking 500

Edge tracing 12 Mbit memory + 5K logic gates

204

4. RECENT INSTITUTE PERSONNEL PUBLICATIONS AND PRESENTATIONS

1. B. Bhanu and O.D. Faugeras, "Segmentation of Images Having

Unimodal Distributions," Submitted to the IEEE Trans. on Pattern

Analysis and Machine Intelligence, July 1980.

2. B. Bhanu and J.H. McClellan, "On the Computation of the Complex

Cepstrum," IEEE Trans. on Acoustics, Speecn and Signal

Processing, pp. 108-111, October 1980.

3. P. Chavel, A.A. Sawchuk, T.C. Strand, A.R. Tanguay, Jr.,

B.H. Soffer, "Optical Logic with Variable Grating Mode

Liquid-Crystal Devices," Optics Letters, Vol. 5, pp. 398-400,

(September 1980).

4. O.D. Faugeras, "An Optimization Approach for Using Contextual

Information in Computer Vision," 1st Annual Conference on

Artificial Intelligence, Stanford, August 1980.

5. O.D. Faugeras, "Autoregressive Modeling with Conditional

Expectations for Texture Synthesis," 5th International Conference

on Pattern Recognition, 1980.

6. O.D. Faugeras, "Decomposition and Decentralization Techniques in

Relaxation Labeling," to be published in Computer Graphics and

Image Processing, 1980.

7. O.D. Faugeras, "Decomposition and Decentralization Techniques in

Relaxation Labeling," ist European Conference on Signal

Processing (EUSIPCO-80), Lausanne, September 1980.

8. O.D. Faugeras, "Des chiffres et des Images," Special Issue of

205

Science et Avenu, No. 29, pp. 58-63, 1980 (invited paper, in

French).

9. O.D. Faugeras, "Optimization Techniques in Scene Analysis," 4th

International Conference on Analysis and Optimization,

Versailles, France, December 16-19, 1980.

10. O.D. Faugeras and J.F. Abramatic, "Design of 2-D Filters from

Small Generating Kernels," submitted to the IEEE Trans. on

Acoustics, Speech and Signal Processing, September 1980.

11. O.D. Faugeras and D.D. Garber, "Algebraic Reconstruction

Techniques for Texture Synthesis," 5th International Conference

on Pattern Recognition, Miami Beach, December 1980.

12. O.D. Faugeras and W.K. Pratt, "Decorrelation Methods of Texture

Feature Extraction," IEEE Trans. on Pattern Analysis and Machine

Intelligence, Vol. PAMI-2, No. 4, July 1980.

13. O.D. Faugeras, W.K. Pratt, and A. Gagalowicz, "Applications of

Stochastic Texture Field Models to Image Processing," to be

published in a Special Issue of the IEEE Proceedings, 1981.

14. O.D. Faugeras and K.E. Price, "Matching Symbolic Descriptions and

Application to the Semantic Description of Aerial Photographs,"

submitted to the IEEE Trans. on Pattern Analysis and Machine

Intelligence, June 1980.

15. O.D. Faugeras and K.E. Price, "Semantic Description of Aerial

Images Using Stochastic Labeling," Proceedings of the IU
Workshop, University of Maryland, pp. 89-94, April 1980.

16. O.D. Faugeras and K.E. Price, "Semantic Description of Aerial

Images Using Stochastic Labeling," 5th International Conference

on Pattern Recognition, Miami Beach, December 1980.

206

17. S. Inokuchi and R. Nevatia, "Boundary Detection in Range

Pictures," to be presented at International Conference on Pattern

Recognition, Miami Beach, December 1980.

18. C.M. Lo and A.A. Sawchuk, "Restoration with Poisson Noise,"

Proceedings of the IEEE, Vol 68, 1980.

19. J. Mantock, A.A. Sawchuk and T.C. Strand, "Hybrid Optical/Digital

Texture Analysis," Optical Engineering, Vol. 19, March/April

1980.

20. R. Nevatia, "Image Understanding Research at USC," Seminar

presented at Univ. of California, Irvine, March 1980.

21. R. Nevatia, Panel Discussion on Image Processing, NCC. 1980, May

1980, Anaheim, California.

22. R. Nevatia and K.R. Babu, "Linear Feature Extraction and

Description," Computer Graphics and Image Processing, July 1980,

pp. 257-269.

23. R. Nevatia, with C. Clark et al., "Matching of Natural Terrain

Scenes," to be presented at International Conference on Pattern

Recognition, Miami Beach, December 1980.

24. A.A. Sawchuk, J. Bescos, and I. Glaser, "Restoration of Color

Images Degraded by Chromatic Aberrations," Applied Optics,

Vol. 19, November 1980.

25. A.A. Sawchuk, T.C. Strand, P. Chavel, "Polychromatic Optical

Processing," Gordon Research Conference on Coherent Optics and

Holography, Santa Barbara, California, June 1980.

26. T.C. Strand, A.A. Sawchuk, A.R. Tanguay, Jr., P. Chavel,

207

D. Boswell, A.M. Lackner and B.H. Soffer, "Variable Grating Mode

Liquid Crystal Valves with their Application to Optical

Processing," Gordon Research Conference on Coherent Optics and

Holography, Santa Barbara, California, June 1980.

27. F. Vilnrotter, R. Nevatia and K.E. Price, "Structural Description

of Natural Textures," to be presented at International Conference

on Pattern Recognition, Miami Beach, December 1980.

208

Oman"

